

An eiaustralia company

ABN 64 002 841 063

Intrusive Geotechnical Investigation

Proposed Melrose Park High School

37 Hope Street, Melrose Park

Report No 20468/4-AA Amended-2

An 🛤 eiaustralia company

COVER PAGE

Document Prepared by

Geotechnique Pty Ltd 1 Lemko Place, Penrith NSW 2750 PO Box 880, Penrith NSW 2751 Email: Geotech@geotech.com.au Tel: +61 2 4722 2700 www.geotech.com.au

Document Information

Document Title	Intrusive Geotechnical Investigation Report
Site Address	37 Hope Street, Melrose Park
Job No	20468/4
Report No	20468/4-AA Amended-2
Client	NSW Department of Education School Infrastructure NSW (SINSW)
Client Address	Level 30, Grosvenor Place, 225 George Street Sydney NSW 2000

Document Control

Rev	Date	Revision Detail/Status	Author	Reviewer	Approver
0	23/12/2024	Initial Issue	Indra Jworchan		Indra Jworchan
1	15/01/2025	Amended-1	Indra Jworchan		Indra Jworchan
2	39/01/2025	Amended 2	Indra Jworchan		Indra Jworchan

Author Signature	Guranha -
Name	Indra Jworchan
Title	Principal Engineer

This document is produced by Geotechnique Pty Ltd solely for the benefit and use by the client in accordance with the terms of the engagement. Geotechnique Pty Ltd does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

An Meiaustralia company

ABN 64 002 841 063

Job No: 20468/4 Our Ref: 20468/4-AA Amended-2 30 January 2025

NSW Department of Education School Infrastructure NSW (SINSW) Level 30, Grosvenor Place, 225 George Street SYDNEY NSW 2000

re: Proposed Melrose Park High School 37 Hope Street, Melrose Park Intrusive Geotechnical Investigation Report

Please find herewith report on an Intrusive Geotechnical Investigation carried out for the proposed new High School at Melrose Park. This report supports the assessment of the proposed Activity under Part 5 of the Environmental Planning and Assessment Act 1979.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

mha

INDRA JWORCHAN Principal Geotechnical Engineer BEng MEng MIEAust CPEng NER APEC Engineer IntPE(Aus) Email: indra@geotech.com.au

20468/4-AA Amended-2 Executive Summary Continued

EXECUTIVE SUMMARY

The NSW Department of Education is proposing to construct a new Melrose Park High School at 37 Hope Street, Melrose Park, to meet the growth in educational demand in Melrose Park. The proposed activities include construction and use of a new high school in two stages for approximately 1000 students. This Intrusive Geotechnical Investigation report has been prepared to assess the potential environmental impacts that could arise from the construction and use of the proposed new high school and to provide geotechnical recommendations on design of proposed activities. The assessments and recommendations presented in this IGI report are summarised below:

- Subsurface profile across the site comprises a sequence of fill and natural soils underlain by bedrock. The depth to bedrock is anticipated to vary from about 0.15m to 0.8m from existing ground surface. The depth to groundwater is more than 5.0m from existing ground surface.
- Fill and residual soils are clayey soils of low to medium plasticity and underlying bedrock is shale of varying strength.
- The subsurface soils across the site are likely to be susceptible to erosion. Therefore, earthworks for the proposed activity should be carried out in accordance with an appropriate Soil Management Plan to minimise erosion and impacts from erosion
- There are no known occurrences of saline and acid sulphate soils across the site.
- There are no known risks associated with slope instability and subterranean instability and hydrology.
- Subsurface conditions across the site may be represented by a Geotechnical Model constituting four Geotechnical Units namely, Unit 1 fill/natural soils and Units 2 to 4 bedrock of variable strength.
- At the completion of site preparation, foundation materials at building platforms for future school buildings and other structures are anticipated to vary from controlled fill to natural soils to bedrock. Therefore, ground bearing floor slabs of proposed buildings may be designed for sites belonging to Class A or M in accordance with Australian Standard AS2870.
- Appropriate footings for the proposed buildings are likely to comprise shallow (pad or strip) footings or deep footing founded or socketed into bedrock and designed in accordance with recommendations provided in this report.
- Potential geotechnical risk for the proposed activity may include risk of occurrence of erodible soils and variation in the depth to bedrock of varying strength.

Based on above discussion, it is our assessment that the potential geotechnical risks at the site for the proposed Activity are "Low" and can be addressed if soil management and design of proposed Activity are carried out in accordance with recommendation provided in this report. Furthermore, it is our assessment that the proposed Activity is not likely to significantly affect the environment in relation to geotechnical considerations. Therefore, it is our assessment that the site is suitable for construction of proposed new high school provided earthworks and designs of ground floor slabs and footings of proposed school structures are carried out in accordance with recommendations provided in this report.

GEOTECHNIQUE PTY LTD

TABLE OF CONTENTS

		Pa	age
		IMMARY	
ACRO		ID ABBREVIATIONS	
1.0	INTROD	UCTION AND DECLARATION	1
2.0	SUMMAR	RY OF ACTIVITIES	2
3.0	SITE DE	SCRIPTION	2
4.0		ORTING REQUIREMENTS	
5.0		TANT REPORT CONTENT	
5.3	1 Васк	ground Information	- 3
	5.1.1	Regional Geology and Soil Landscape	
	5.1.2	Soil Salinity	
	5.1.3	Acid Sulphate Soils	
	5.1.4 5.1.5	Groundwater	
5.2		JK Geotechnics Report minary Geotechnical Desktop Study	
5.3	3 Intru	isive Geotechnical Investigation	- 7
	5.3.1	Field Works	7
	5.3.2	Subsurface Profile	7
	5.3.3	Laboratory Test	
	5.3.4	Recommended Geotechnical Model for the Site	
	5.3.5	Soil Salinity	
	5.3.6	Exposure Classification	
	5.3.7	Aggressivity Classification	
	5.3.8 5.3.9	Soil Reactivity	
	5.3.10	Excavation Conditions	
	5.3.11	Fill Placement	
	5.3.12	Batter Slopes and Retaining Structures	
	5.3.13	Site Classification	
	5.3.14	Floor Slabs	15
	5.3.15	Footings	.15
	5.3.16	Slope Stability Assessment	
6.0	POTENT	IAL GEOTECHNICAL CONSTRAINTS OR RISKS	-17
7.0	MITIGAT	TON MEASURES FOR GEOTECHNICAL RISKS	-17
8.0	SIGNIFI	CANCE OF ENVIRONMENTAL IMPACTS	-19
9.0		SIONS	
10.0		REFERENCES	

ATTACHMENTS

Attachment A:Drawing No 20468/4-AA1 Plan Showing Borehole Locations and Borehole LogsAttachment B:Laboratory Test Results

20468/4-AA Amended-1 Table of contents continued

ACRONYMS AND ABBREVIATIONS

Acronym / Abbreviation	Description
ASS	Acid Sulphate Soil
COLA	Covered Outdoor Learning Area
CSM	Conceptual Site Model
DoE	Department of Education
EC	Electrical Conductivity
Ece	Equivalent Electrical Conductivity
ESP	Exchangeable Sodium Percentage
GLS	General Learning Spaces
IGI	Intrusive Geotechnical Investigation
PGDR	Preliminary Geotechnical Desktop Report
PS	Public School
REF	Reference Environmental Factors
SINSW	School Infrastructures NSW
SPT	Standard Penetration Test
SWMS	Safe Work Method Statement

1.0 INTRODUCTION AND DECLARATION

This Intrusive Geotechnical Investigation (IGI) report has been prepared by Geotechnique Pty Ltd on behalf of the Department of Education (DoE) to assess the potential environmental impacts that could arise from the construction and use of the new Melrose Park High School project (the **Activity**) at 37 Hope Street, Melrose Park (the **Site**). This report supports the assessment of the proposed Activity under Part 5 of the Environmental Planning and Assessment Act 1979. The Activity is proposed by the DoE to meet the growth in educational demand in the Melrose Park precinct. Figure 1 below shows the location of the site.

Figure 1 - Location of Proposed Melrose Park High School

This report has been prepared to provide assessment of subsurface conditions across the site in order to provide geotechnical recommendations on site preparation and the design of the proposed activities, including school structures. The IGI was completed in accordance with Australian Standard AS1726 (Reference 1).

2.0 SUMMARY OF ACTIVITIES

The proposed activity is for the construction and use of the new Melrose Park High School. The proposed activity is being assessed under Part 5 of the Environmental Planning and Assessment Act 1979. It is (or will soon be, subject to legislative amendment) permitted without consent under State Environmental Planning Policy (Transport and Infrastructure) 2021.

The proposed activity involves the construction and use of a new high school in two stages for approximately 1,000 students.

Stage 1 of the proposed activity includes the following:

- Site preparation works.
- Construction of Block A a six-storey (with additional roof/plant level) school building in the southwesternportion of the site containing staff rooms and General Learning Spaces (GLS).
- Construction of Block B a one storey (double height) hall, gymnasium, canteen and covered outdoor learning area (COLA) building in the south-eastern portion of the site.
- Construction of Block C a single storey plant and storage building at the north-eastern portion of the site.
- Associated landscaping.
- Construction of on-site car parking.
- Provision and augmentation of services infrastructure.
- Associated infrastructure works to support the school, including (but not limited to):
 - Provision of kiss and drop facilities along Wharf Road and widening of the Wharf Road footpath.
 - Raised pedestrian crossings.

Stage 2 of the proposed activity includes the following:

- Construction of Block D a five-storey (with additional roof/plant level) school building in the northwestern portion of the site containing staff rooms and GLS:
- Additional open play spaces within the terrace areas of Building D.
- Minor layout amendments to Block A.

Figure 2 in the following page shows footprints of proposed buildings, car park, open spaces etc.

3.0 SITE DESCRIPTION

The site is located at 37 Hope Street, Melrose Park, within the Parramatta LGA. The school covers an approximate area of 9,500m2 and is generally rectangular in shape. The site is currently cleared and vacant. The site is located approximately 8km east of the Parramatta CBD.

4.0 **REF REPORTING REQUIREMENTS**

This IGI report is prepared specifically to address the following geotechnical engineering related Reference Environmental Factors (REF) reporting requirements.

Requirement	Y	N	N/A	Comments
Soil and Water				
If the site is mapped as, or has otherwise been identified, as having salinity potential, does the geotechnical report consider impacts from salinity and set out measures to mitigate impacts (i.e. Salinity Management Plan) so that they would not be significant?				Section 5.1.2 and 5.3.5
If the site is mapped as, or has otherwise been identified as having acid sulfate soils (ASS) potential, does the geotechnical report consider impacts from ASS and set out measures to mitigate impacts (i.e. ASS Management Plan) so that they would not be significant?				Section 5.1.3
If the site is mapped as being in an area of groundwater vulnerability, does the REF include an Integrated Water Management Plan that assess the potential of the activity to impact groundwater and does it conclude that the activity would not be likely to have significant environmental impacts with or without mitigation measures?				Section 5.1.4 and 5.3.2
If the site is mapped as being in an area of landslide risk, does the REF assess the potential of the activity and does it conclude that the activity would not be likely to have significant environmental impacts with or without mitigation measures?				Section 5.3.16
Does the REF summarise the proposed controls and incorporate any mitigation measures identified in the above documents?	\boxtimes			Section 7.0

5.0 CONSULTANT REPORT CONTENT

5.1 Background Information

5.1.1 Regional Geology and Soil Landscape

Based on the Geological Map of Sydney (scale 1:100,000), bedrock at the site is anticipated to be Hawkesbury Sandstone comprising medium to very coarse grained quartz sandstone, minor laminated mudstone and siltstone lenses (Reference 2).

Based on the Soil Landscape Map of Sydney (scale 1:100,000), the landscape at the site is anticipated to belongs to Lucas Height Group, which is characterised by gently undulating crests and ridges on plateau surfaces of Mittagong Formation (alternating bands of shale and fine grained sandstone), with local relief to 30m and ground surface slopes of less than 10%. Rock outcrop is absent. The subsurface soil is likely to be moderately deep (0.5m to 1.5m) and stony (Reference 3).

Figure 2 - Footprints of Proposed Structures in Proposed Melrose Park High School

5.1.2 Soil Salinity

Reference to Map showing Salinity Potential in Western Sydney (Scale Approximate 1:143,000) prepared by Department of Infrastructures, Planning and Natural Resources (2002) indicates low salinity potential across most portions of the site and moderately salinity potential in the north western corner of the site (Reference 4).

5.1.3 Acid Sulphate Soils

Department of Land and Water Conservation has produced Acid Sulphate Soil Risk Maps for areas with known or potential occurrence of acid sulphate soils in NSW. Reference to Acid Sulphate Soil Risk Map of Prospect/Parramatta shows no known or probabilities of occurrences of acid sulphate soils across the site for proposed Melrose Park New High School (Reference 5).

5.1.4 Groundwater

A search of the website of Department of Primary Industries Office of Water for registered groundwater bore data shows no registered bore within radius of 500.0m of the site (Reference 6). There is no water body, such as a creek, river, or wetland close to and transecting the site.

5.1.5 JK Geotechnics Report

JK Geotechnics prepared a geotechnical investigation report (Reference 7) for a proposed residential development at the corner of Hope Street and Wharf Road at Melrose Park. This investigation involved

drilling of sixteen boreholes designated as BH1 to BH16 and indicated below in Figure 3. Boreholes designated as BH3 to BH8 are located within the site for the proposed high school.

Figure 3 – Locations of Boreholes Drilled for Preparation of Reference 7

Boreholes designated as BH3 to BH8 drilled to depth of about 20.0m from existing ground surface indicate that the subsurface profile across the site is likely to comprise a sequence of pavement/fill and residual soils underlain by bedrocks. Reference 7, among others, indicates the following.

- The site belong to "Mild Exposure Classification" in accordance to Australian Standard AS2159 for concrete pile design (Reference 8).
- The indicative California Bearing Ratio (CBR) value of residual soils is about 6.0%
- Bedrocks up to borehole termination depths include shale generally underlain by sandstone. Bedrocks classified for foundation design in accordance with Pells et al (Reference 9) indicate the following.
 - The depth to Class V shale varies from about 0.5m to 2.0m from existing ground surface and elevation at the top surface of Class V shale varies from about RL14.5m to 16.0m AHD.
 - The depth to Class IV shale and sandstone varies from about 3.5m to 5.5m and elevation at the top surface of Class IV shale and sandstone varies from about RL11.50 to 13.5m AHD.

- The depth to Class II shale varies from about 4.5m to 6.0m and elevation at the top surface of Class V shale varies from about RL11.0m to 12.5m AHD.
- The depth to Class II sandstone varies from about 10.5m to 13.0m and elevation at the top surface of Class V shale varies from about RL3.5m to 6.5m AHD.

5.2 Preliminary Geotechnical Desktop Study

Geotechnique Pty Ltd completed a Preliminary Geotechnical Desktop Study (PGDS) for the proposed high school and submitted Report No 20468/21-AA dated 27 February 2024 (Reference 10). This report in general indicates the following:

- Subsurface profile across the site is likely to comprise a sequence of topsoil/fill and natural soils underlain by bedrock. Natural soils are loose to medium dense sandy soils and stiff to very stiff clayey soils of low to medium plasticity. The depth to bedrock is anticipated to be 2.0m or more from natural ground surface and the depth to groundwater is likely to be in excess of 1.5m from natural ground surface. But the depth to bedrock and groundwater could be significantly different from those mentioned above if the site has been subjected to cut and fill operation which is deemed likely.
- The subsurface soils across the site are also likely to be susceptible to erosion. Therefore, earthworks may have to be carried out in accordance with an appropriate Soil Management Plan (Reference 11).
- There are no known occurrence of saline soils and acid sulphate soil materials within the soil profiles at the site. Therefore, earthworks may be carried out without approved Saline Soil Management Plan and Acid Sulphate Soil Management Plan.
- There are no known risks associated with slope instability and subterranean instability and hydrology.
- Subsurface conditions across the site may be represented by a Geotechnical Model constituting two Geotechnical Units namely, Unit 1 natural soils and Unit 2 bedrock. Controlled fill, which may be placed during proposed development works, may be considered to belong to Unit 1. It is desirable that uncontrolled fill if encountered is replaced with controlled fill.
- At the completion of earthworks, foundation materials at building platforms for future school buildings are anticipated to vary from controlled fill to natural soils and appropriate Site Classifications for building sites across the school are likely to belong to Class M or H1 in accordance with Australian Standard AS2870 (Reference 12).
- Appropriate footings for the proposed buildings are likely to comprise shallow (pad or strip) footings founded on controlled fill, natural soils or deep footings socketed into bedrock.
- Potential geotechnical risk for the proposed development may include risk of occurrence of uncontrolled fill which are unsuitable foundation materials and excessive soil erosion.

From geotechnical engineering considerations, the site is assessed to be suitable for construction of the proposed Melrose Park High School provided earthworks/site preparation and designs of floor slabs and footings of future school buildings and other structures are carried out in accordance with recommendations provided in IGI report and proposed structures are located outside the zone of influence of existing structures and vice versa.

5.3 Intrusive Geotechnical Investigation

5.3.1 Field Works

Field works for the intrusive geotechnical investigation were carried out on 2 and 3 December 2024 and consisted of the following.

- Review the PGDR and plan showing footprints of proposed buildings and basketball court.
- Review services plans obtained from "DBYD" to assess locations of existing underground services across the site.
- Carry out a walk over survey to assess existing site conditions and nominate five borehole locations, three boreholes within the footprints of Blocks A and C and one borehole each within the footprints of Block B and basketball court.
- Scan the proposed borehole locations for underground services to ensure boreholes are located away from existing services.
- Drill five (5) boreholes using a truck mounted drilling rig fully equipped for geotechnical investigation. Boreholes within the footprints of Blocks A and C were initially drilled to TC-bit refusal in bedrock at depths of about 0.8m to 2.95m and then continued to depths of about 5.0m to 5.5m using rock coring method. Two remaining boreholes were terminated at TC-bit refusal in bedrock at depths of about 0.8m to 1.6m. Locations of boreholes are indicated on Drawing No 20468/4-AA1 presented in Appendix A. Borehole logs and core photographs are also presented in Appendix A.
- Carry out Standard Penetration Tests (SPT) in boreholes at regular depth intervals to assess the strength of sub-surface soils. SPT results are included in appropriate borehole logs.
- Recover representative soil samples and rock cores from boreholes for visual assessments and laboratory tests.
- Measure depths to groundwater levels in boreholes, if encountered.
- Backfill the boreholes with recovered materials after logging and sampling.
- Locate borehole locations using our inhouse GPS.

Field works were supervised by a Field Engineer from this company and carried out in accordance with a Safe Work Method Statement (SWMS) to ensure works are carried out safely and with minimum impact to the environment.

5.3.2 Subsurface Profile

Sub-surface profiles encountered in boreholes are detailed in borehole logs presented in Appendix A and summarised below in Table 1.

Borehole No	Easting (m)	Northing (m)	Ground Surface RL (m AHD)	Termination Depth (m)	Depth for Fill (m)	Depth for Residual Soil (m)	Depth to Bedrock (m)
BH1	6256844.12	321539.77	16.26	5.31	0.0-0.15	-	0.15
BH2	6256884.24	321527.47	16.00	5.50	0.0-0.30	-	0.30
BH3	6256927.88	321509.00	15.48	5.00	-	0.0-0.3	0.30
BH4	6256855.53	321571.34	16.04	1.63	0.0-0.15	-	0.15
BH5	6256940.34	321535.00	15.21	0.85	-	0.0-0.8	0.80

Table 1 - Sub-surface Profiles encountered in Boreholes

Table 1 indicates that the subsurface profiles across the site generally comprise a sequence of fill or residual soils underlain by bedrock. The depth to bedrock is anticipated to vary from about 0.15m to 0.8m from existing ground surface. The subsurface materials may in general be described as follows:

Fill Gravelly CLAY, low plasticity, grey, moist, generally well compacted

Residual Soil Silty CLAY, medium to high plasticity, brown, mottled grey, moisture content generally lower than plastic limit, firm to stiff

Bedrock SHALE, grey, extremely to slightly weathered, low to high strength, with ironstone bands

Groundwater level was not encountered up to TC-bit refusal depths of about 0.85m to 2.95m from existing ground surface. Use of water for rock coring precluded measurement of groundwater level at completion of coring. But based on observation during drilling, we anticipate that the depth to regional groundwater level across the site to be more than 5.0m during normal climatic conditions. However, it should be noted that the groundwater levels might vary due to rainfall and other factors not evident during field work.

5.3.3 Laboratory Test

Representative soil samples recovered from boreholes were tested in NATA accredited laboratories to determine the following.

- Physical properties including Atterberg Limits, shrink swell index and Emerson Class.
- Chemical properties including Electrical Conductivity, pH, sulphate and exchangeable sodium percentage.

Rock cores were photographed and tested for determination of point load strength index.

Detailed results of laboratory on soil samples are presented in Appendix B and summarised in the following Tables 2 and 3.

	Table 2 - Results of Physical Properties Tests						
Borehole	Sample	Liquid	Plastic	Plasticity	Shrinkage	Emerson	Shrink Swell
No	Depth (m)	Limit (%)	Limit (%)	Index (%)	Limit (%)	Class	Index (%/pF)
BH1	0.8-1.0	34.0	19.0	15.0	8.0	2	-
BH2	0.3-0.5	34.0	14.0	20.0	10.0	2	-
BH4	1.0-1.4	32.0	18.0	14.0	7.0	6	-
BH5	0.0-0.15	-	-	-	-	-	2.9

Borehole No	Sample Depth (m)	EC (μS/cm)	рН	Sulphate (ppm)	Exchangeable Sodium Percentage (%)
BH1	1.1-1.30	43	5.5	59	34.4
BH2	1.5-1.95	38	5.6	49	29.8
BH3	0.7-0.74	28	5.2	34	18.5
BH4	1.5-1.63	56	5.0	59	28.6
BH5	0.5-0.85	46	4.6	34	8.8

Table 3- Results of Chemical Properties Tests

Rock cores obtained from obtained from boreholes were photographed and tested at regular depth intervals for determination of Point Load Strength Index (Is_{50}). The point load strength indices for the rock cores and the assessed rock strengths, in accordance with Australian Standard AS1726 (Reference 1), are summarised in the following Table 4.

Borehole No	Depth (m)	Diametral I _{s(50)} MPa	Axial I _{s(50)} (MPa)	Assessed Diametral Strength	Assessed Axial Strength
BH1	2.90	0.03	0.54	Very Low	Medium
BH1	3.65	0.23	0.62	Low	Medium
BH1	4.18	0.56	0.75	Medium	Medium
BH1	5.10	1.08	2.58	High	High
BH2	3.10	0.37	0.52	Medium	Medium
BH2	4.28	0.20	3.02	Low	Very High
BH2	5.48	0.09	3.58	Very Low	Very High
BH3	2.05	0.09	0.21	Very Low	Low
BH3	3.68	0.04	0.10	Very Low	Low
BH3	4.40	0.16	0.22	Low	Low

Table 4 - Results of Point Load Strength Index Tests

It should be noted that Point Load Strength tests could only be carried out on intact (stronger) portions of rock cores. Therefore, strength assessments presented in Table 4 indicates the upper limits of rock strengths. Based on assessed rock strengths and rock discontinuities shown in the borehole logs, bedrock from the proposed development site is classified for foundation design in accordance with Pells et al (Reference 9) in the following Table 5.

Borehole No	Ground Surface RL (m AHD)	Depth Range for Class V Rock (m)	Depth Range for Class IV Rock (m)	Depth Range for Class III/II Rock (m)
BH1	16.26	0.15-2.7	2.7-3.3	≥3.3
BH2	16.00	0.3-3.0	3.0-4.0	≥4.0
BH3	15.48	0.8-1.0	1.0->5.0	-
BH4	16.04	≥0.15	-	_
BH5	15.21	≥0.80	-	-

Table 5 - Rock Classification for Foundation Design

5.3.4 Recommended Geotechnical Model for the Site

Boreholes indicate that the subsurface profile across the site comprises a sequence of fill or residual soils underlain by bedrock. The thickness of fill and residual soil combined is anticipated to vary from about 0.15m to 1.0m and the depth to bedrock across the site is anticipated to vary from 0.15m to 0.8m from existing ground surface.

Based on borehole information detailed in this report, a Geotechnical Model constituting four Geotechnical Units and detailed below in Table 6 is suggested for the site of the proposed new high school. Each Geotechnical Unit represents a specific nature of soil or bedrock encountered across the site. *NSW Department of Education* Recommended indicative strength parameters, in terms of cohesion and internal friction angle, as well as modulus for each Geotechnical Unit are presented below in Table 7.

Geotechnical	Material Description	Indicative Depth	Indicative d RL at the				
Unit	-	to Top of Unit (m)	Top of Unit (m AHD)				
Unit 1	Fill/Residual Soil	0.0	15.2-16.2				
Unit 2	Bedrock – Class V	0.1-1.0	14.4-16.1				
Unit 3	Bedrock – Class IV	1.0-3.0	13.0-14.5				
Unit 4	Bedrock – Class III/II	3.5->5.0	≤13.0				

Table 6 - Recommended Geotechnical Model

Geotechnical Units	Unit Weight (kN/m³)	Undrained Cohesion (kPa)	Effective Cohesion (kPa)	Friction Angle (deg)	Young's Modulus (MPa)	Poisson's Ratio
Unit 1	18.5	100.0	3.0	26.0	15.0	0.30
Unit 2	20.0	300.0	15.0	29.0	50.0	0.25
Unit 3	21.0	450.0	20.0	30.0	100.0	0.25
Unit 4	23.0	600.0	50.0	33.0	250.0	0.20

5.3.5 Soil Salinity

Soil salinity is generally assessed by measuring Electrical Conductivity (EC) of a soil sample made up of 1:5 soil water suspension. Thus, determined EC is multiplied by a multiplying factor varying from 6 to 23, based on the texture of the soil sample, to obtain Corrected Electrical Conductivity designated as ECe (Reference 13). Alternatively, ECe may be directly measured in soil saturation extracts. Soils are classified as saline if ECe of the saturated extracts exceed 4.0dS/m. The criteria for assessment of soil salinity classes are shown in the following Table 8 (Reference 13).

Classification	EC _e (dS/m)	Comments
Non-saline	<2	Salinity effects mostly negligible
Slightly saline	2 – 4	Yields of very sensitive crops may be affected
Moderately saline	4 – 8	Yields of many crops affected
Very saline	8 – 16	Only tolerant crops yield satisfactorily
Highly saline	>16	Only a few tolerant crops yield satisfactorily

Table 8 - Criteria for Soil Salinity Classification	
---	--

Electrical conductivity (EC) values for 5 representative soil samples are summarised in Table 3. For gravelly clay encountered across the site an appropriate multiplying factor is assumed to vary from 10 to 12. Even if a factor of 12 is used, estimates of ECe values for representative soil samples are estimated to be less than 2.0dS/m. Therefore, soils across the site, including fill and residual soils, are assessed to be non-saline soils.

5.3.6 Exposure Classification

Australian Standard AS2870 (Reference 12) provides guidelines to assess Exposure Classification for saline and acid/sulphate soils. Table 9 below provides salinity and Exposure Classifications based on EC_e, and Table 10 provides Exposure Classification based on acidic and sulphate soils (Reference 12).

Electrical Conductivity, ECe (dS/m)	Exposure Classification	Salinity Classification			
<2	A1	Non-saline			
2 – 4	A1	Slightly saline			
4 – 8	A2	Moderately saline			
8 – 16	B1	Very saline			
>16	B2	Highly saline			

Table 9 – Exposure Classifications for Saline Soils

Sulphate expressed as SO ₃		рH	Exposure Classification*		
In Soil (ppm)	In Groundwater (ppm)	рп	Soil Condition A	Soil Condition B	
<5000	<1000	>5.5	A2	A1	
5000-10000	1000-3000	4.5-5.5	B1	A2	
10000-20000	3000-10000	4.0-4.5	B2	B1	
>20000	>10000	<4.0	C2	B2	

*Soil Condition A = high permeability soils (e.g. sands and gravels) which are below groundwater

*Soil Condition B = low permeability soils (e.g. silts and clays) and all soils above groundwater

Soils across the site are predominantly clayey and therefore "Soil Condition B" is assessed to appropriate for the site. Therefore, based on laboratory test results presented in Tables 3 and guidelines on Exposure Classifications presented in Tables 9 and 10, the Exposure Classifications for site is Class A1 or A2. pH values are dominant. Therefore, we recommend that the proposed high school construction use construction materials (such as concrete, bricks etc) and construction methods appropriate for Exposure Class A2.

5.3.7 Aggressivity Classification

Australian Standard AS2159 (Reference 8) provides Aggressivity Classifications of soil and groundwater applicable to iron/steel and concrete piles. The Aggressivity Classifications applicable to iron/steel piles is provided below in Table 11 and that applicable to concrete piles is provided in Table 12.

Chloride		pН	Resistivity	Soil Condition	Soil Condition	
In Soil (ppm)	In Water (ppm)	рп	(ohm cm)	A*	B#	
<5000	<1000	>5.0	>5000	Non-aggressive	Non-aggressive	
5000-20000	1000-10000	4.0-5.0	2000-5000	Mild	Non-aggressive	
20000-50000	10000-20000	3.0-4.0	1000-2000	Moderate	Mild	
>50000	>20000	<3.0	<1000	Severe	Moderate	

Table 11– Aggressivity Classification for Steel

Sulphate	Sulphate expressed as SO ₄		Chloride in	Soil Condition	Soil Condition	
In Soil (ppm)	In Groundwater (ppm)	рН	Water (ppm)	Α	В	
<5000	<1000	>5.5	<6000	Mild	Non-aggressive	
5000-10000	1000-3000	4.5-5.5	6000-12000	Moderate	Mild	
10000-20000	3000-1000	4.0-4.5	12000-30000	Severe	Moderate	
>20000	>10000	<4.0	>30000	Very Severe	Severe	

Table 12 – Aggressivity	Classification for Concrete
-------------------------	-----------------------------

As discussed above, "Soil Condition B" is appropriate for the site. Therefore, based on laboratory test results presented in Tables 3 and guidelines on Aggressivity Classifications presented in Tables 11 and 102 the soils across the site are assessed to be Non-aggressivity to Mildly Aggressive to concrete piles but Non-aggressive to steel piles (Reference 8). Therefore, we recommend that the piles supporting proposed high school structures are designed to suit assessed aggressivity classifications.

5.3.8 Soil Reactivity

Reactivity of soils across the site is assessed by determination of Atterberg limits and shrink swell index for representative samples and results are presented in Table 2. Representative soils show liquid limit of 32% to 34% and plasticity index of 14% to 30%. Likewise, shrink swell index of a representative soil sample is 2.9%/pF. Based on results of Atterberg limits and shrink swell index, it is our assessment that soil across the site of low to medium plasticity and therefore susceptible to some shrink and swell movements. This fact should be considered in the design and construction of proposed school building and other structures.

5.3.9 Soil Erodibility

Erosion is the detachment and movement of soil materials. Soil erodibility (or dispersivity) is generally assessed by assessing physical properties tests such as Emerson Class and Pinhole Class and chemical properties tests such as Exchangeable Sodium Percentage (ESP) and Sodium Absorption Ratio (SAR).

For the current investigation, Emerson Classes and ESP values for representative soil samples were determined. Test results can be assessed as follows:

- Emerson Class tests grade soils into eight classes, Class 1 being highly erodible (highly dispersive) and Class 8 being non-erodible (non-dispersive). Soils with Emerson Classes 1 to 4 are to be treated with caution if used in construction purposes (Reference 14). Table 2 indicates two soil samples out of three belong to Emerson Class 2 whereas one sample belongs to Emerson Class 6.
- Soils with ESP values of 10% or more are considered sodic/dispersive and susceptible to excessive erosion whereas soils with ESP of more than 5% are potentially dispersive (Reference 13). Table 3 indicates ESP values of five samples vary from 8.8% to 34.4% but only one sample shows ESP values of less than 18.0%.

Although one sample shows Emerson Class of 6 indicting possibility of localised non-dispersive soils, it is our assessment that the soils across the site are predominantly erodible and susceptible to excessive erosion. Therefore, we recommend that the excavation and disturbance of soils during proposed activity are carried out in accordance with a Soil Management Plan (SMP) to minimise impacts of soil erosion. SMP can be developed in accordance with Department of Housing Guidelines (Reference 11).

5.3.10 Excavation Conditions

Site preparation for construction of proposed new high school is anticipated to involve only minor excavation and proposed excavations are anticipated to be up to about 1.5m from existing ground surface. Therefore, the materials to be excavated during site preparation are anticipated to comprise fill, residual soils and Class V and IV shale (Units 1 to 3).

It is our assessment that the excavations for construction of proposed new high school can be achieved using conventional earthmoving equipment such as excavators and dozers.

Based on site observation during field works, we do not anticipate significant groundwater inflow during excavations to depth of about 1.5m. Minor groundwater inflow, if any, could be managed by a conventional sump and pump method. However, trafficability problems could arise locally during wet weather or if water is allowed to pond at the site.

5.3.11 Fill Placement

Site preparation for construction of the proposed high school construction may involve placement of some fill. Fill placement should be carried out in a controlled manner and we recommend the following procedures for placement of controlled fill.

- Strip any existing topsoil and stockpile separately for possible future uses or dispose off the site. Topsoil may be used in landscaping.
- Undertake proof rolling of exposed fill and/or residual soil using an 8 to 10 tonnes roller to detect potentially weak spots (ground heave). Excavate areas of localised heaving to a depth of about 300mm and replace with granular fill, compacted as described below.
- Undertake proof rolling of soft spots backfilled with granular fill, as described above. If the backfilled area shows movement during further proof rolling, this office should be contacted for further recommendations. But if removal of topsoil and heaving ground exposes bedrock, no additional proof rolling will be required.
- Place suitable fill materials on proof rolled surface of fill/residual or bedrock. Fill should be placed in horizontal layers of 200mm to 250mm maximum loose thickness and compacted to a Minimum Dry Density Ratio (MDDR) of 98% Standard, at moisture content within 2% of Optimum Moisture Content (OMC). However, the upper 500mm of controlled fill forming subgrade for access roads and car parks should be compacted to a MDDR of 100% Standard, at moisture content within 2% of OMC. Controlled fill should preferably comprise non-reactive fill (e.g. crushed sandstone), with a maximum particle size not exceeding 75mm, or low plasticity clay. The fill materials, residual soils and bedrock obtained from excavations within the site may also be selectively used in controlled fill, after crushing to sizes finer than 75mm, moisture conditioning, and removal of unsuitable materials.
- Fill placement should be supervised to ensure that material quality, layer thickness, testing frequency and compaction criteria conform to the design specifications. We recommend "Level 1" supervision and testing, in accordance with AS3798 (Reference 15).

Where no fill placement is required, existing fill, if any, should be proof rolled as discussed above to ensure no heaving occurs so that existing fill is suitable foundation materials. Heaving fill should be removed are replaced with controlled fill placed in accordance with above recommendations.

5.3.12 Batter Slopes and Retaining Structures

As discussed, site preparation for construction of the proposed high school may involve some cut and fill operations. Cut and fill slopes are likely to be shallow and generally of temporary in nature. Batter slopes should be battered for stability or retained by engineered retaining structures. We do not anticipate cut and fill slopes will require retention.

For battered slopes, we recommend the following:

- For short-term stability = 1 vertical to 1 horizontal
- For long-term stability = 1 vertical to 2.5 horizontal

But if cut and fill slopes steeper than those recommended above are required for whatever reason, these slopes should be retained by engineered retaining structures. Appropriate retaining structures for the proposed works are anticipated to comprise cantilever walls and gravity walls. The pressure distribution on such walls is assumed to be triangular in shape and estimated as follows:

$$p_h = \gamma k H$$

Where,

For design of flexible retaining structures where some lateral movement is acceptable, an active earth pressure coefficient (ka) of 0.35 is recommended. However, if it is critical to limit the horizontal deformation, use of an earth pressure coefficient at rest (ko) of 0.55 is recommended. Recommended coefficients are based on the assumptions that the ground level behind the retaining structure is horizontal, and the retained material is effectively drained. Additional earth pressures resulting from surcharge load (buildings, infrastructures, etc) on retained materials and groundwater pressure, if any, should also be allowed for in design of retaining structures.

As bedrock are anticipated at shallow depths, retaining walls are anticipated to be founded on or socketed into bedrock. Allowing bearing pressures for design of footings are presented below in this report. The passive pressure coefficient for design of retaining wall socketed into bedrock are as follows.

- K_p for Bedrock Units 2 and 3 = 2.8
- K_p Bedrock Unit 4 = 3.0

The design of any retaining structure should also be checked for bearing capacity, overturning, sliding and overall stability of the slope.

5.3.13 Site Classification

Australian Standard AS2870 (Reference 12) indicates that a building site can be classified based on thickness of clayey foundation soils and reactivity (shrink swell movements) of foundation soils. Site preparation for construction of the proposed high school structures is anticipated to involve minor cut and fill operations. At completion of site preparation, it is anticipated bedrock will be exposed in some portion of the site. Where, no or minor fill placement occurred, the thickness of clayey foundation soils, comprising fill and residual soils, is anticipated to vary from about 0.5m to about 1.5m. Therefore, depending on assessed reactivity of foundation soils and extent of cut and fill operations, the building sites across the site are anticipated to belong to "Class A" or "Class M" in accordance with Australian Standard AS2870 (Reference 12). Therefore, we recommend site classification for individual building footprints are ascertained after completion of site preparation.

5.3.14 Floor Slabs

After preparation of site in accordance with the recommendations provided above, the foundation materials at ground floor levels of proposed school buildings and other structures will be controlled fill, residual soils and/or bedrock. Therefore, ground floor slabs for the proposed buildings and other structures may be designed and constructed as ground bearing slabs or suspended slabs supported by footings designed in accordance with recommendations provided in this report.

Ground floor slabs bearing on controlled fill and residual soils may be designed for "Class M" site in accordance with Australian Standard AS2870 (Reference 12). However, floor slabs bearing on bedrock may be designed to suit "Class A" site in accordance with Australian Standard AS2870 (Reference 12). Shrink swell movements of 20.0mm to 40.0mm is anticipated for "Class M" site but no significant shrink swell movement is anticipated for "Class A" site.

Alternatively, we recommend a Modulus of Subgrade Reaction value of 25kPa/mm and 40kPa/mm for ground floor slabs bearing on controlled fill/residual soils and bedrock respectively.

It should be noted that the site classification in accordance with AS2870 is applicable only for design of footing systems for a single dwelling, house, townhouse or similar structure that would be detached or separated by a party wall or common walls. Therefore, site recommended site classification may not be applicable for proposed school buildings.

5.3.15 Footings

Loading conditions for the proposed school buildings and other structures are not known at this stage. However, we consider that appropriate footings would comprise shallow footings (pad and strip footings) or deep footings (bored piers) founded on or socketed into bedrock. Deep footings would be preferable if footings are required to support high vertical loads as well as significant lateral and uplift pressures. As bedrock is anticipated at shallow depth, we do not anticipate footings for significant structures to be founded on controlled fill and residual soils. The recommended allowable bearing pressures for design of shallow and deep footings are presented in the following Table 13.

Founding Material	Founding Depth from Existing Ground Surface (m)	Ultimate Bearing Pressure (kPa)	Allowable Bearing Pressure (kPa)	Ultimate Shaft Adhesion (kPa)	Allowable Shaft Adhesion (kPa)
Unit 1-Fill/Residual Soil	0.0	250.0	100.0	Ignore	Ignore
Unit 2-Bedrock – Class V	0.1-1.0	1500.0	700.0	150.0	70.0
Unit 3-Bedrock – Class IV	1.0-3.0	3000.0	1000.0	300.0	100.0
Unit 4-Bedrock – Class III/II	3.5->5.0	5000.0	2500.0	500.0	250.0

Table 13 – Recommended I	Bearing Pressures
--------------------------	-------------------

The following should be noted:

- The ultimate bearing pressure and shaft adhesion are based on the ultimate capacities mobilised at large displacements, about 5.0% to 10.0% of pile diameter or minimum footing width. These values assume a clean rock socket with a roughness Category of R2 or better (Reference 16).
- The allowable bearing pressure and shaft adhesion are based on the capacities mobilised at displacements of about 1.0% of pile diameter or minimum footing width.
- The ultimate and allowable bearing pressures for Units 2, 3 and 4 are based on the assumptions that the piers are socketed at last 0.3m into appropriate rock units.
- Differential settlements are estimated to be about halves the estimated total settlements.
- The shaft adhesions against uplift pressures are halves the shaft adhesions for compressive loads presented in above table.
- For limit state design, geotechnical strength reduction factor ϕ_g of 0.50 is recommended in accordance with AS2159 (Reference 8). However, reduction factor ϕ_g can be increased up to 0.7 to 0.8 if pile design is verified by analyses of pile load tests and sufficient construction monitoring is carried out.

It is preferable that the footings are founded on similar foundation. As depths of bedrock with the recommended bearing pressures are anticipated to vary across the site, the founding depths of footings to be constructed will also vary. Therefore, an experienced Geotechnical Engineer should confirm bearing pressures at founding levels during construction, on the basis of assessment made during footing excavation or pier hole drilling.

5.3.16 Slope Stability Assessment

At existing site conditions events of slope failures across the site is "Unlikely" (Reference 17). Even if a slope failure occurs, consequences of such slope failure in the site to the property would be "Minor" resulting in limited damage to part of structure or part of site requiring some stabilisation. Therefore, the site for the proposed Activity is assessed to have a "Very Low to Low Risk" to the property at existing conditions. Therefore, the site is suitable for proposed Activity from slope stability considerations. However, earthwork for proposed activity may involve some cut and fill operations that will increase likelihood of slope failures. It is also our assessment that the risk of slope instability across the site can be maintained at "Low" so that the site is suitable for proposed Activity from slope stability considerations provided the following:

• Earthworks, including excavation and fill placement, are completed in accordance with recommendations provided in an IGI report.

• Design and construction of batter slopes, retaining structures, ground floor slabs and footings of buildings are carried out in accordance with recommendations provided in this report.

6.0 POTENTIAL GEOTECHNICAL CONSTRAINTS OR RISKS

Based on anticipated site conditions, the potential geotechnical constraints or risks due to proposed Activity include the following.

- The risk of variability in the depth to bedrock across the site
- The risk of excessive erosion of soils

Boreholes indicate that the depth to bedrock across the site varies from about 0.1m to 0.8m from existing ground surface. Likewise, the depths to bedrock Unit 3 and 4 vary across the site. It will be preferably that the footings of proposed buildings/structures are founded on bedrock of similar strength or same unit. Therefore, designer of buildings should consider impacts of these variabilities on design and costing of the buildings.

Fill and residual soils across the site generally comprises clayey soils accessed to be susceptible to excessive erosion. Therefore, designer of the activity should consider impacts for erosion and prepare a management plan to minimise the impacts from erosion.

7.0 MITIGATION MEASURES FOR GEOTECHNICAL RISKS

As discussed above in this report, the potential geotechnical risks on proposed high school construction include variabilities in depths to bedrock of varying strengths and presence of erodible soils.

The geotechnical risks associated with variabilities in depth to bedrock of varying strengths can be addressed by conducting inspection during construction stage. However, geotechnical information presented in this report is adequate for structural design and cost management.

Likewise, constrained associated with erodible soil can be addressed if earthworks are carried out in accordance with an appropriate Soil Management Plan prepared in accordance with recommendation provided in Department of Housing Guidelines (Reference 11).

Table 14 in the following page presents recommended mitigation measures to address these geotechnical constraints or risks so that the residual risks are "Low" and the site is suitable for the proposed Activity.

Project Stage Design (D) Construction (C) Operation (O)	Mitigation Measures	Reason for Mitigation Measure	Relevant Section of Report
D, C & O	The designer should recognise that the subsurface soils across the site are susceptible to erosion and therefore disturbance and excavation of soils across the site should be carried out in accordance Soil Management Plan (SMP) developed in accordance with Guidelines provided in NSW Department of Housing, Managing Urban Stormwater, Soils and Construction, 1998. The cost for management of erodible soil should be considered in project costing.	claims during construction stage.	Section 5.3.9
D, C & O	The designer should recognise variability in the depth to bedrock of varying strengths to ascertain that the designs of activities are appropriate to actual foundation conditions and its impact on project design and costing. The depth to bedrock will need to be confirmed by inspections during construction stage	To reduce the risk or uncertainties due to variation in depths to bedrock of varying strengths so that actual founding depths for piers supporting buildings and other major structures are known. This means appropriate, economical and reliable foundation design can be achieved and potential variation claims during construction stage can be minimised. Appropriate and economical design will ensure optimal use of steel, concrete etc and minimal environmental impacts.	Section 5.3.14 & 5.3.15
D & C	The designer should recognise that the subsurface soils across the site are reactive and therefore design of ground bearing slabs should be appropriate to assessed site classification	To ensure design is appropriate to the site conditions and minimise variation claims during construction stage.	Section 5.3.13

Table 14 – Recommended Mitigation Measures to Manage Geotechnical Risks

8.0 SIGNIFICANCE OF ENVIRONMENTAL IMPACTS

Based on nature of potential geotechnical risks or issues at the site, it is our assessment that the potential impacts of the proposed Activity can be appropriately mitigated or managed in accordance with the recommended mitigation measures presented in Table 14 so that the residual risk is "Low". Therefore, from geotechnical engineering consideration, it is determined that the extent and nature of potential impacts from the proposed Activity are "Low" and will not have significant impact on the locality, community and/or the environment.

9.0 CONCLUSIONS

Based on results of PGDS and IGI, it is our assessment that 37 Hope Street at Melrose Park is suitable for construction of Melrose Park High School from geotechnical engineering considerations provided (1) geotechnical constraints imposed by variability in depth of bedrock of varying strengths and presence of erodible soils are addressed in accordance with mitigation measures provided in this report; and (2) site preparation and design of floor slabs and footings of proposed buildings are carried out in accordance to geotechnical recommendations provided in this report. Therefore, from geotechnical engineering considerations, the extent and nature of potential impacts from the proposed Activity are "Low" and will not have significant impact on the locality, community and/or the environment.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

mha

INDRA JWORCHAN Principal Geotechnical Engineer

10.0 LIST OF REFERENCES

- 1. Australian Standard AS1726-2017, Geotechnical Site Investigation 2017.
- Herbert, C. (Editor), 1983. Geology of the Sydney, Geological Survey of NSW. Department of Mineral and Energy. 1:100,000 Map Sheet 9130, 225p
- 3. G. A. Chapman and C. L. Murphy., Soil Landscape Map of Sydney (Scale 1:100,000), Landscape Series Sheet 9083, Department of Land and Water conservation, Soil Conservation Services of NSW, 1989, 160p.
- 4. Department of Infrastructure, Planning and Natural Resources, Map showing Salinity Potential in Western Sydney (scale approximately 1:140,000), 2002.
- 5. Department of Land and water Conservation, Acid Sulphate Soil Risk Map of Prospect/Parramatta (scale 1:25,000), 1997
- 6. NSW Department of Primary Industries, Office of Water Website, Registered Groundwater Bore Data.
- 7. JK Geotechnics, Geotechnical Investigation, Proposed Residential Development, Melrose Park Stage 2, cnr Hope Street and Wharf Road, Melrose Park, Ref. 31073ZNrpt, 2 February 2018.
- 8. Australian Standard AS2159-2009, Piling Design and Installation, 2009.
- 9. Pells, P J N, Mostyn, E, Bertuzzi, B. and Wong, P. K, Classification of Sandstone and Shale in the Sydney Region: A Forty Years Review, Australian Geomechanics Journal, Vol 54, No 2, June 2019.
- 10. Geotechnique Pty Ltd, Preliminary Geotechnical Desktop Report, Proposed New Melrose Park High School, 84 Wharf Road, Melrose Park, Report No 20468/21-AA, 27 February 2024
- 11. NSW Department of Housing, Managing Urban Stormwater, Soils and Construction, 1998.
- 12. Australian Standard AS2870-2011, Residential Slabs and Footings, 2011.
- 13. Lillicrap, A and McGhie, S., Site Investigation for Urban Salinity, Department of Land and Water Conservation, 2002.
- 14. Fell, R., MacGregor, P, Stapledon, D., Bell, G. and Foster, M., Geotechnical Engineering of Embankment Dams, Second Edition, 2017.
- 15. Australian Standard AS3798-2007, Guidelines on Earthworks for Commercial and Residential Developments, 2007.
- 16. Pells, P. J. N, State of Practice for the Design of Socketed Piles in Rocks, Proceeding 8th Australian New Zealand Conference on Geomechnics, Hobart, pp 1-307-327.
- 17. Australian Geomechanics Society Landslide Taskforce, Landslide Practice Note Working Group "Practice Note Guidelines for Landslide Risk Management", March 2007.

ATTACHMENT A

Drawing No 20468/4-AA1 Plan Showing Borehole Locations and Borehole Logs

GEOTECHNIQUE PTY LTD

engineering log - borehole

	Pro Lo	ent : oject catio	:: on:	Pi Ci	orner	ed Sc Whar	f Ro	ad & I	Hope Street, Melrose Park Da	b No. : 20468/4 prehole No. : BH1 ate : 2/12/2024 pgged/Checked by: JH					
C			lel ar amet			ing : r	C nm	omma	bearing : deg.		eg. :um :	R.L. sı	Irface : 16.26 AHD		
method	vater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristi colour, secondary and minor components.	o isture ndition	consistency density index	hand penetrometer kPa	Remarks and additional observations		
						0	\otimes	-	FILL: Gravelly Clay, low plasticity, grey	М			Well compacted		
				DS		_			SHALE: brown-grey, highly weaathered, lo to medium strength	wc			Bedrock		
						 0.5			Moderately weathered, low to medium strength						
				DS		-							-		
				ODT	20, 10,	1									
TC bit auger				501	8/20mm HB N=R	-							_		
uger						 1.5									
						_							_		
						_							-		
						2									
						_							_		
	Dry					2.5									
	×								BH1 continue coring at 2.64m						
						3							_		
						-							_		
						_							-		
						3.5 —									
						_							-		
						4									
						_							-		
													-		
L						4.5 —									

form no. 002 version 04 - 05/11

engineering log cored borehole

	Clien Proje Locat	ct :	Ρ	INSW roposed School corner Wharf Road & Hope Street, I	Velros	se Pa	ark		Be Da	ob No.: 2 orehole N ate: 2/12 ogged/Chee	o.: BH1
	drill n	nodel	and	mounting : Cammachio Tack N	/lounte	ed G	ieo	slop	e:	deg	. R.L. surface : 16.26
	core	size:		NMLC			k	earing) :	90 deg	
		Ļ	ō	CORE DESCRIPTION	5		р	oint load	₁		DEFECT DETAILS
barrel lift	water Ioss/level	depth of R.L. in meters	graphic log	rock type, grain characteristics, colour, structure, minor components.	weathering	strength		index strength IS(50) /└ ∟ ^M н ^V		defect spacing (mm) ରୁଁ ତ୍ରି ତ୍ର ତ୍ର ତ୍ର ତ୍ର	DESCRIPTION type, inclination, thickness, planarity, roughness, coating. Specific General
F		2.5		Start coring BH1 @2.64m			EL			<u>0 7 6 6 7 6</u>	
		3.5 		SHALE, grey with iron bands @3.2m, grey	MW- SW	M M-H		×			2.73m: Bp, Pl, Ro, Cn 2.78m: Bp, Pl, Ro, Sn 2.86m: Bp, Pl, Ro, Sn 2.95m: Bp, Pl, Ro, Cn 3.15m: Bp, Pl, Ro, Cn 3.26-3.27m: Bp=3°, Pl, Ro, Cn 3.53m: Bp, Pl, Ro, Cn 3.56m: Bp, Pl, Ro, Cn 3.62m: Bp, Pl, Ro, Cn 3.71m: Bp, Cu, Ro, Cn 4.05m: Bp, Pl, Ro, Cn
		5		@5.26m, grey with ironstone bands.	SW	H- VH		>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- - - -
		5.5 — — — — — — — — — — — — — — — — — — —		BH1 terminated at 5.31m							<u>5.26-5.28m: XWS= 20mm</u>

form no. 003 version 03 - 09/10

GEOTECHNIQUE PTY LTD

engineering log - borehole

Г

	Pro	ent oject catio	t :	Ρ		ed Scl	ed School Job No. : 20468/4 Borehole No. : BH2 Wharf Road & Hope Street, Melrose Park Date : 2/12/2024-3/12/2024 Logged/Checked by: JH										
C	Irill	moo	del ar	nd m	nount	ing :	С	omma	chio Track Mounted Geo	30 s5ope :	de	eg.	R.L. sı	Irface: 16.00			
	ho	le di	amet	er :	125	n	nm		bearing :	dat	um :		AHD				
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPT soil type, plasticity or particle c colour, secondary and minor co	haracteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations			
						0			FILL: Gravelly Clay, low plastic	sity, grey	М			Well compacted			
				DS	-	0.5			SHALE: brown-grey, highly to r weathered, low strength with cl	moderately ay lenses				Bedrock			
						_								-			
						1											
TC bit auger						 								-			
uger				SPT	10, 12, 18 N=30									-			
						2			Grey, moderately weathered, lo	 owstrength	-						
						-								-			
						2.5 —											
	Dry																
						3			BH2 continue coring at 2.95m					-			
						3.5 —											
														-			
						4											
						 4.5								-			
L														-			

form no. 002 version 04 - 05/11

engineering log cored borehole

	Clien Proje Loca		Р	INSW roposed Schoo orner Wharf R	ol oad & Hope Street,	et, Melrose Park Job No.: 20468/4 Borehole No.: BH2 Date: 3/12/2024 Logged/Checked by: JH											
┢	drill ı	nodel	and	mounting :	Cammachio Tack I	Mounte	ed C	Geo	S	lop				de			
	core	size:			NMLC				bea	ring	g :	9	0	de	eg. datum : AHD		
		ب	5	CORE	ESCRIPTION				point	load					DEFECT DETAILS		
barrel lift	water Ioss/level	depth of R.L. in meters	graphic log		rain characteristics, ire, minor components.	weathering	strength		ind strer ls(;	index strength IS(50)			defe paci (mn ខ្លួ ន្ល	ing	type, inclination, thickness,		
		2.5	-	Start coring BH2	@2.95m												
		3 			y, with iron bands th ironstone bands. at 5.5m	SW	M								3.03-3.05m: Cs, XWS=10mm 3.14m: Bp, Pl, Ro, Cn 3.21m: Bp, Pl, Ro, Cn 3.22m: Bp, Pl, Ro, Cn 3.31-3.32m: ls(clay)= 10mm - 3.38-3.73m: XWS=350mm - - 3.78m: Bp, Pl, Ro, Sn 3.90-3.92m: XWS= 20mm -		
form no. 003 version 03 - 09/10		6.5 															

GEOTECHNIQUE PTY LTD

engineering log - borehole

Г

	Pro	ent : oject catio	t:	Pi	-	ed Sc			Hope Street, Melrose Park Da	Job No. : 20468/4 Borehole No. : BH3 Date : 3/12/2024 Logged/Checked by: JH					
ſ						ing :		omma	chio Track Mounted Geo 3650pe		-	R.L. surface : 15.48			
	ho	le di	amet	er:	125		nm		bearing : deg.	da	tum :	AHD			
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characterist colour, secondary and minor components	0 D C D	consistency density index	hand penetrometer kPa	Remarks and additional observations		
				DS	-	0		CI-CH	Silty CLAY, medium to high plasticity, bro mottled grey, with shale fragments	wn M <pl< th=""><th>F-St</th><th></th><th>Residual –</th></pl<>	F-St		Residual –		
TC bit auger						 0.5			SHALE: grey, highly to moderately weathered, low to medium strength				Bedrock		
	Dry			SPT	10/	-							_		
					40mm HB N=R				BH3 continue coring at 0.8m						

form no. 002 version 04 - 05/11

engineering log cored borehole

	Clien Proje			INSW roposed Scho	al										20468/4 Io.: BH3					
	Locat			-	oad & Hope Street,	Melros	e P	ark			Da	ate	:	3/12	2/2024 ecked by : JH					
	drill r	nodel	and	mounting :	Cammachio Tack	Mounte	ed C	Geo	S	lop		33		deç		5.48				
	core	size:			NMLC			I	bea	ring	j :	90)	deç	g. datum: A	HD				
F		Ŀ		CORE	DESCRIPTION				point lo						DEFECT DETAILS					
₩	vel	of R. ers	c log			ering	÷	·	ind	ex			efe aci		DESCRIPTION					
barrel lift	water Ioss/level	depth of R.L. in meters	graphic log	colour, structu	rain characteristics, re, minor components.	weathering	strength		stren IS(5	5Ō)			mm	I)	type, inclination, thicknes planarity, roughness, coating Specific G					
		0.5		Start coring BH3	@0.8m										-					
		_		Coreloss																
		1 — — —		SHALE, pale gre	y with iron bands	HW	L								frequent bedding parting					
		 1.5 																		
		2							×											
		 2.5																		
		 3																		
		-		@3.25m grey wit	h iron bands	HW- MW	-								 3.28m: Bp, PI, Ro, Sn 3.29-3.43m: XWS=140mm 					
		3.5 — — —							×						3.21m: Bp, Pl, Ro, Cn 3.515-5.535m:Bp=4°St,Ro,Sn 3.61m:Bp, Pl, Ro, Sn 3.65-3.66m: Bp=2°,Pl, Ro, Sn 3.72-3.76m:XWS = 40mm					
		4													3.82-3.98: Jo=80°, PI, Ro, Cg 4.03m: BP=1°, PI, Ro, Sn 4.05: Bp=1°,PI, Ro, Sn					
							L-M		×						4.14m:Bp=1°, PI, Ro, Sn 4.21m:Bp, PI, Ro Sn 4.25-4.39m: Jo=80°, Ir, Ro, Sn					
		4.5 — 													 - 4.47m: Bp, Pl, Ro, Sn 4.495-4.505m:Cs, XWM= 10mm 4.665m:Bp, Pl, Ro, Sn 					
				Duo											- ⁻ 4.87m-4.90m: Cs, XWS=30mm → 4.96-5.0m: Jo=70°, PI, Ro, Cn					
				BH3 terminated	at 5.0m						:					1				

GEOTECHNIQUE PTY LTD

engineering log - borehole

	Pro Lo	Client : SINSW Job No. : 20468/4 Project : Proposed School Borehole No. : BH4 Location : Corner Wharf Road & Hope Street, Melrose Park Date : 2/12/2024 Logged/Checked by: JH Logged/Checked by: JH											
C			iel ar amet			-	nm	omma	bearing : deg		leg. Itum :	R.L. sı	AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteris colour, secondary and minor components		consistency density index	hand penetrometer kPa	Remarks and additional observations
F						0		-	FILL: Gravelly Clay, low plasticity, grey	М			Well compacted
ТС				DS		 0.5			SHALE: brown-grey, highly to moderatel weathered, low to medium strength				Bedrock
TC bit auger						 1 			Moderately weathered, medium strength				
	Dry			DS SPT	18/ 130mm HB N= 30	 1.5			BH4 terminated at 1.63m due to SPT ref	usal			
						2.5 							

form no. 002 version 04 - 05/11

GEOTECHNIQUE PTY LTD

engineering log - borehole

Г

Client : SINSW Job No. : 20468/4 Project : Proposed School Borehole No. : BH5 Location : Corner Wharf Road & Hope Street, Melrose Park Date : 03/12/2024 Logged/Checked by: JH Logged/Checked by: JH													
C	drill model and mounting : Comr hole diameter : 125 mm							omma	chio Track Mounted Geo 36560pe : bearing : deg.		deg. R.L. surface : 15.3 datum : AHD		
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteris colour, secondary and minor components		consistency density index	hand penetrometer kPa	Remarks and additional observations
taam TC bit auger		env	GI4	95 U50 DS DS SPT	3, 4, 12/ 20mm HB N=R		grap	sp)		/ M <p< td=""><td>L F-St</td><td></td><td>Residual </td></p<>	L F-St		Residual
						3 3.5 4 4.5							

form no. 002 version 04 - 05/11

Log Symbols & Appreviations (Non-cored Borenole Log)	Log Symbols & Abbreviations	(Non-cored	Borehole Log)
--	-----------------------------	------------	----------------------

Log Column	Symbol/Value	Description						
Drilling Method	V-bit	Hardened steel 'V' shaped bit attached to auger						
	TC-bit	Tungsten Carbide bit attached to auger						
	RR	Tricone (Rock Roller) bit						
	DB	Drag bit						
Groundwater	BB Dry	Blade bit Groundwater not encountered to the drilled or auger refusal depth						
	V							
		Groundwater level at depths shown on log						
Environment Sample	GP	Groundwater seepage at depths shown on log Glass bottle and plastic bag sample over depths shown on log						
	G	Glass bottle sample over depths shown on log						
	Р	Plastic bag sample over depths shown on log						
PID Reading	100	PID reading in ppm						
Geotechnical Sample	DS	Disturbed Small bag sample over depths shown on log						
	DB	Disturbed Bulk sample over depths shown on log						
Field Test	U ₅₀ N=10	Undisturbed 50mm tube sample over depths shown on log Standard Penetration Test (SPT) 'N' value. Individual numbers indicate blows per						
	3,5,5	150mm penetration.						
	N=R	'R' represents refusal to penetration in hard/very dense soils or in cobbles or						
	10,15/100	boulders.						
		The first number represents10 blows for 150mm penetration whereas the second number represents 15 blows for 100mm penetration where SPT met refusal						
	DCP/PSP 5	Dynamic Cone Penetration (DCP) or Perth Sand Penetrometer (PSP). Each						
	6	number represents blows per 100mm penetration. 'R/10' represents refusal after						
	-	10mm penetration in hard/very dense soils or in gravels or boulders.						
	R/1	0						
Classification	GP	Poorly Graded GRAVEL						
	GW	Well graded GRAVEL						
	GM GC	Silty GRAVEL Clayey GRAVEL						
	SP	Poorly graded SAND						
	SW	Well graded SAND						
	SM	Silty ŠAND						
	SC	Clayey SAND						
	ML	SILT / Sandy SILT / clayey SILT, low plasticity						
	MI MH	SILT / Sandy SILT / clayey SILT, medium plasticity SILT / Sandy SILT / clayey SILT, high plasticity						
	CL	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, low plasticity						
	CI	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, medium plasticity						
	СН	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, high plasticity						
Moisture Condition								
Cohesive soils	M <pl M=PL</pl 	Moisture content less than Plastic Limit Moisture content equal to Plastic Limit						
	M=PL M>PL	Moisture content to be greater than Plastic Limit						
Cohesionless soils	D	Dry - Runs freely through hand						
	M W	Moist - Tends to cohere						
Consistency		Wet Tends to cohere Term Undrained shear strength, Hand Penetrometer						
Cohesive soils	VS	C_u (kPa) (Qu)						
	S	Very Soft ≤12 <25						
	F	Śoft >12 & ≤25 25 - 50						
	St	Firm >25 & ≤50 50 – 100						
	VSt	Stiff >50 & ≤100 100 − 200						
	Н	Very Stiff >100 & ≤200 200 - 400 Hard >200 >400						
Density Index		Term Density Index, I _D (%) SPT 'N' (blows/300mm)						
Cohesionless soils	VL	Very Loose ≤15 ≤5						
	L	Loose >15 & ≤35 >5 & ≤10						
	M	Medium Dense >35 & ≤65 >10 & ≤30						
	D	Dense >65 & ≤85 >30 & ≤50						
Hand Ponotromator	VD 100	Very Dense >85 >50						
Hand Penetrometer	100 200	Unconfined compressive strength (q _u) in kPa determined using pocket penetrometer, at depths shown on log						
		Geological origin of soils						
Remarks								
Remarks	Residual	Residual soils above bedrock						
Remarks	Alluvium	River deposited Alluvial soils						
Remarks								
?emarks	Alluvium Colluvial	River deposited Alluvial soils Gravity deposited Colluvial soils						

GEOTECHNIQUE PTY LTD

AS1726 : 2017– Unified Soil Classification System

Major D	Divisions	Particle size (mm)	Group Symbol	Typical Names	Field Identi	fications Sand a	nd Gravels				Laboratory classifica	tion	
OVERSIZE	BOULDERS	>200							% Fines (2)	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes
OVERSIZE	COBBLES	63						'su					
		GW Well-graded gravels, gravel-sand mixtures, little or no fines Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength		≤5	-	>4	between 1 and 3	1. Identify lines by the method given for fine					
	GRAVEL (more than half of coarse fraction is		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength			given in 'Major Divisions'	≤5	-	Fails to con	nply with above	grained soils
	larger than 2.36mm)	Martinez C 7	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials zero to medium	with excess of nor dry strength	non-plastic fines,		≥12	Below 'A' line or I _p <4	-	-	2. Borderline classifications occur when the
COARSE GRAINED SOIL (more than 65% of		Medium 6.7	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	to the criteria	≥12	Above 'A' line or <i>I_p</i> >7	-	-	percentage of fines (fraction smaller than 0.075mm size)
soil excluding oversize fraction is greater than		Fine 2.36	SW	Well-graded sands, gravelly sands, little or no fines		rain size and subs te sizes, not enou- o dry strength		according t	≤5		>6	between 1 and 3	greater than 5% and less than 12%. Borderline classifications
0.075mm)	SAND (more than half of	Coarse 0.6 Medium 0.21	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength			classification of fractions	≤5	-	Fails to comply with above		require the use of dual symbols e.g. SP-SM, GW- GC
	coarse fraction is smaller than 2.36mm)	Medium 0.2 T	SM	Silty sands, sand-silt mixtures	'Dirty' materials zero to medium	with excess of nor dry strength	n-plastic fines,	ification o	≥12	Below 'A' line or $I_p < 4$	-	-	
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength		stic fines,	o.	≥12	Above 'A' line of I _p >7	-	-	
		ML		Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Slow to	Toughness Low	ng 63mm f		Below 'A'			
	SILT (0.075mm to 0.0 CLAY (<0.002mm) Liquid Limit<50%	002mm) &	CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	rapid None to very slow	Medium	gradation of material passing	E E	line Above 'A' line	⁶⁰		a
FINE GRAINED			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	tion of ma	sing 0.075	Below 'A' line	50 -		1100 200
SOIL (more than 35% of soil excluding oversize raction is less than			MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	None to slow	Low to medium	the	More than 35% passing 0.075mm	Below 'A' line	DO NO	CH or OH	
1.075mm)	SILT (0.075mm to 0.002mm) & CLAY (<0.002mm) Liquid Limit>50%		СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	More than	Above 'A' line		OL MH or 6	н
			OH (1)	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium		-	Below 'A' line		ML or OL 30 40 50 60 7/ LIQUID LIMIT W _L , %	0 80 90
	HIGHLY ORGANIC S	SOILS	Pt (1)	Peat and highly organic soils	Identified by colour, odour, spongy feel and generally by fibrous texture				Effervesce	s with H ₂ O ₂			

Log Symbols & Abbreviations (Cored Borehole Log)

Log Column	Symbol / Abbreviation	Description		
Core Size	NQ NMLC	Nominal Core Size (mn 47 52	n)	
Water Loss	HQ —	63 Complete water loss		
	$ \longrightarrow $	Partial water loss		
Weathering (AS1726:2017)	RS	Residual Soil	Material is weathered to such properties. Mass structure and of original rock are no longer v been significantly transported	material texture and fabric
	XW	Extremely Weathered	Material is weathered to such properties. Mass structure and of original rock are still visible	
	HW	Highly Weathered	The whole of the rock material iron staining or bleaching to the the original rock is not recogn significantly changed by wea minerals have weathered to cla be increased by leaching, or n deposition of weathering product	e extent that the colour of izable. Rock strength is thering. Some primary y minerals. Porosity may nay be decreased due to
	MW	Moderately Weathered	The whole of the rock material iron staining or bleaching to the the original rock is not recognize change of strength from fresh ro	e extent that the colour of able, but shows little or no
	SW	Slightly Weathered	Rock is partially discoloured v along joints but shows little or n fresh rock	
	FR	Fresh	Rock shows no sign of dea minerals or colour changes	composition of individual
		Distinctly Weathered (I changed by weatheri	possible to distinguish between H DW) may be used. DW is defined ng. The rock may be highly may be increased by leaching, g products in pores'	as 'Rock strength usually discoloured, usually by
Strength (AS1726:2017)	VL L M H VH	Very Low Low Medium High Very High	Point Load Strength Index (I _{s50} , ≥0.03 ≤ 0.1 >0.1 ≤0.3 >0.3 ≤1 >1 ≤3 >3 ≤10 >10	MPa)
Defect Spacing	EH	Extremely High Description Extremely closely spaced Very closely spaced Medium spaced Widely spaced Very widely spaced Extremely widely spaced		Spacing (mm) <20 20 to 60 60 to 200 200 to 600 600 to 2000 2000 to 6000 >6000
Defect Description (AS1726:2017)				
Туре	Pt Jo Sh Sz Ss Cs Is Ews	Parting Joint Sheared Surface Sheared Zone Sheared Seam Crushed Seam Infilled Seam Extremely Weathered S	Seam	
Macro-surface geometry	St Cu Un Ir Pl	Stepped Curved Undulating Irregular Planar		
Micro-surface geometry	Vro Ro Sm Po Sl	Very Rough Rough Smooth Polished Slickensided		
Coating or infilling	cn sn vn cg	clean stained veneer coating		

Grain Size mm		Bedded rocks (mostly sedimentary)									
More than 20	20		ain Size scription			At leas	st 50% of	grains are of car	bonate	At least 50% of grains are of fine-grained volcanic rock	
	6	RUDACEOUS		CONGLOMERATE Rounded boulders, cob cemented in a finer mat Breccia Irregular rock fragments	d DOLOMITE		Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite	
	0.6	ARENACEOUS	Coarse Medium Fine	SANDSTONE Angular or rounded grai cemented by clay, calci Quartzite Quartz grains and silice Arkose Many feldspar grains Greywacke	te or iron minerals		LIMESTONE and DOLOMITE (undifferentiated)	Calcarenite		Cemented volcanic ash	Gypsum
	0.06 0.002 Less than	ARGI	LLACEOUS	Many rock chips MUDSTONE SHALE Fissile	SILTSTONE Mostly silt CLAYSTONE Mostly clay	Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF	
Amorpho crypto-cry				Flint: occurs as hands o Chert: occurs as nodule	of nodules in the cha		calcareou	s sandstone			COAL LIGNITE
				Granular cemented – except amorphous rocks							
				SILICEOUS	CALCA	REOUS			SILICEOUS	CARBONACEOUS	
		Granular cemented roc	SEDIMENTARY ROCKS Granular cemented rocks vary greatly in strength, some sandstones are stronger than many Igneous rocks. Bedding may not show in hand specimens and is best seen in outcrop. Only sedimentary rocks, and some metamorphic rocks derived from them, contain fossils								
				Calcareous rocks conta	in calcite (calcium c	arbonate)	which eff	ervesces with dil	ute hydro	chloric acid	

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

Obviously fo	liated rocks (mostly metamorphic)		Rocks with	massive structure	and crystalline texture	(mostly igneous)		Grain size (mm)
Grain size description			Grain size description	Pe	egmatite		Pyrosenite	More than 20
	GNEISS	MARBLE				_	Peridorite	20
	Well developed but often widely spaced foliation sometimes with schistose bands	QUARTZITE		GRANITE	Diorite	GABBRO	Peridonte	6
COARSE	schistose banos	Granulite	COARSE		e sometimes are then described, porphyritic granite			6
	Migmatite Irregularly foliated: mixed schists and gneisses	HORNFELS						2
	SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6
MEDIUM		Serpentine	MEDIUM	These rocks are sometimes phorphyritic and are then described as porphyries		Dolerite		0.2
								0.06
	PHYLLITE Slightly undulose foliation; sometimes 'spotted'			RHYOLITE	ANDESITE	DAGAL T		0.002
FINE	SLATE Well developed plane cleavage (foliation)		FINE	These rocks are sometimes phorphyritic and are then described as porphyries		BASALT		Less than 0.002
	Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e
CRYSTALLIN	Ē			Pale<			>Dark	
SILICEOUS		Mainly SILICEOUS		ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC	
impart fissility. foliated metan Any rock bake and is general	IIC ROCKS phic rocks are distinguished by foliation Foliation in gneisses is best observe norphics are difficult to recognize exce d by contact metamorphism is describ ly somewhat stronger than the parent tamorphic rocks are strong although p	d in outcrop. Non- pt by association. ed as 'hornfels' rock		closely interlocking	g mineral grains. Stron ; 2 Laccoliths; 3 Sills; 4			

ATTACHMENT B

Laboratory Test Results

Material:

0468/4-1
9/12/2024
School Infrastructure NSW

20468/4 **Project Number:** Proposed Melrose Park High School **Project Name:** cnr Hoe Street and Wharf Road, Melrose Park **Project Location:** Work Request: 89 S-89A Sample Number: **Date Sampled:** 02/12/2024 **Dates Tested:** 09/12/2024 - 11/12/2024 Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling Preparation Method: In accordance with the test method Sample Location:

BH1, Depth: 0.8 - 1.0

SHALE: brown-grey, moderately weathered, low to medium strength

Atterberg Limit (AS1289 3.1.1 & 3.2	.1 & 3.3.1)	Min	Max	
Sample History	Oven Dried			
Preparation Method	Dry Sieve			
Liquid Limit (%)	34			
Plastic Limit (%)	19			
Plasticity Index (%)	15			
Linear Shrinkage (AS1289 3.4.1)		Min	Max	
Moisture Condition Determined By	AS 1289.3.1.1			
Linear Shrinkage (%)	8.0			
Cracking Crumbling Curling	None			
Emerson Class Number of a Soil (A	S 1289 3.8.1)	Min	Max	
Emerson Class	2			
Soil Description	Shale			
Nature of Water	Distilled water			
Temperature of Water (°C)	25			

Geotech Testing Pty Ltd Penrith Laboratory 34 Borec Road Penrith NSW 2750 Phone: (02) 4722 2744 Email: matthew@geotech.com.au Accredited for compliance with ISO/IEC 17025 - Testing

m. mars NATA WORLD RECOGNISED

Approved Signatory: Mathew Morley Laboratory Manager NATA Accredited Laboratory Number: 2734

Material:

0468/4-1
9/12/2024
School Infrastructure NSW

20468/4 **Project Number:** Proposed Melrose Park High School **Project Name: Project Location:** cnr Hoe Street and Wharf Road, Melrose Park Work Request: 89 S-89B Sample Number: **Date Sampled:** 02/12/2024 **Dates Tested:** 09/12/2024 - 11/12/2024 Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling Preparation Method: In accordance with the test method Sample Location: BH 2 , Depth: 0.3 - 0.5

SHALE: brown-grey, highly to moderately weathered, low strength with clay lenses

Atterberg Limit (AS1289 3.1.1 & 3.2	.1 & 3.3.1)	Min	Max	
Sample History	Oven Dried			
Preparation Method	Dry Sieve			
Liquid Limit (%)	34			
Plastic Limit (%)	14			
Plasticity Index (%)	20			
Linear Shrinkage (AS1289 3.4.1)		Min	Max	
Moisture Condition Determined By	AS 1289.3.1.1			
Linear Shrinkage (%)	10.0			
Cracking Crumbling Curling	None			
Emerson Class Number of a Soil (A	S 1289 3.8.1)	Min	Max	
Emerson Class	2			
Soil Description	Gravelly Clay			
Nature of Water	Distilled Water			
Temperature of Water (°C)	25			

Geotech Testing Pty Ltd Penrith Laboratory 34 Borec Road Penrith NSW 2750 Phone: (02) 4722 2744 Email: matthew@geotech.com.au Accredited for compliance with ISO/IEC 17025 - Testing

m. mars NATA WORLD RECOGNISED

Approved Signatory: Mathew Morley Laboratory Manager NATA Accredited Laboratory Number: 2734

Material:

Report Number:	20468/4-1
Issue Number:	1
Date Issued:	19/12/2024
Client:	School Infrastructure NSW

20468/4 **Project Number:** Proposed Melrose Park High School **Project Name:** cnr Hoe Street and Wharf Road, Melrose Park **Project Location:** Work Request: 89 Sample Number: S-89C **Date Sampled:** 02/12/2024 **Dates Tested:** 09/12/2024 - 11/12/2024 Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling Preparation Method: In accordance with the test method Sample Location: BH 4, Depth: 1.0 - 1.4

SHALE: brown-grey, moderately weathered, medium strength

Geotech Testing Pty Ltd Penrith Laboratory 34 Borec Road Penrith NSW 2750 Phone: (02) 4722 2744 Email: matthew@geotech.com.au Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Mathew Morley Laboratory Manager NATA Accredited Laboratory Number: 2734

Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		_
Liquid Limit (%)	32		
Plastic Limit (%)	18		
Plasticity Index (%)	14		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.1		
Linear Shrinkage (%)	7.0		
Cracking Crumbling Curling	None		

Emerson Class Number of a Soil	(AS 1289 3.8.1)	Min	Max
Emerson Class	6		
Soil Description	Gravelly Clay		
Nature of Water	Distilled Water		
Temperature of Water (^o C)	25		

Report Number:	20468/4-1
Issue Number:	1
Date Issued:	19/12/2024
Client:	School Infrastructure NSW

Project Number:	20468/4
Project Name:	Proposed Melrose Park High School
Project Location:	cnr Hoe Street and Wharf Road, Melrose Park
Work Request:	89
Dates Tested:	09/12/2024 - 10/12/2024
Location:	Hoe Street and Wharf Road, Melrose Park

Geotech Testing Pty Ltd Penrith Laboratory 34 Borec Road Penrith NSW 2750 Phone: (02) 4722 2744 Email: matthew@geotech.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mathew Morley Laboratory Manager NATA Accredited Laboratory Number: 2734

Shrink Swell Index AS 1289 7.1.1 & 2.1.1			
Sample Number	S-89D		
Date Sampled	02/12/2024		
Date Tested	10/12/2024		
Material Source	**		
Sample Location	BH 5 (0.0 - 0.18)		
Inert Material Estimate (%)	**		
Pocket Penetrometer before (kPa)	6		
Pocket Penetrometer after (kPa)	4		
Shrinkage Moisture Content (%)	21.6		
Shrinkage (%)	3.8		
Swell Moisture Content Before (%)	24.2		
Swell Moisture Content After (%)	28.1		
Swell (%)	3.0		
Shrink Swell Index Iss (%)	2.9		
Visual Description	Red Clay, slightly dry sample		
Cracking	SC		
Crumbling	**		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

NATA Accreditation does not cover the performance of pocket penetrometer readings.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORT DE	TAILS
Contact Client Address	Indra Jworchan Geotech Testing Pty Ltd P.O. Box 880 PENRITH	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	NSW 2751 02 4722 2700 02 4722 6161 indra.jworchan@geotech.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	20600/2 393 Terrace Road, North Richmond 20600/2 61	SGS Reference Date Received Date Reported	SE275923 R0 16/12/2024 23/12/2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

10

Shane MCDERMOTT Laboratory Manager

узыкузыв гивни

Ying Ying ZHANG Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

pH in soil (1:2) [AN101] Tested: 19/12/2024

PARAMETER pH (1:2)	UOM pH Units	LOR	SE275923.001 4.8	SE275923.002 4.6	SE275923.003 4.8	SE275923.004 4.2	SE275923.005 5.2
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
			0.4-0.5	1.5-1.7	0.4-0.6	1.8-2.0	0.4-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			TP1	TP1	TP2	TP2	TP3

			TP3	TP4	TP4	TP5	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.8-2.0	0.5-0.7	1.7-1.9	0.3-0.5	0.9-1.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.006	SE275923.007	SE275923.008	SE275923.009	SE275923.010
pH (1:2)	pH Units	-	4.5	4.1	4.1	4.9	4.7

			TP6	TP6	TP7	TP7	TP8
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.7	2.0-2.2	0.5-0.7	1.8-2.0	0.5-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.011	SE275923.012	SE275923.013	SE275923.014	SE275923.015
pH (1:2)	pH Units	-	4.2	4.8	4.8	4.1	5.1

			TP8	TP9	ТР9	TP10	TP10
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.4-1.5	0.5-0.6	1.8-2.0	0.5-0.7	1.4-1.5
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.016	SE275923.017	SE275923.018	SE275923.019	SE275923.020
pH (1:2)	pH Units	-	4.5	5.0	4.4	5.9	4.2

			TP11	TP11	TP12	TP12	TP13
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	1.2-1.4	0.4-0.5	0.8-1.0	0.4-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.021	SE275923.022	SE275923.023	SE275923.024	SE275923.025
pH (1:2)	pH Units	-	4.6	4.6	4.3	4.5	4.6

			TP13	TP14	TP14	TP15	TP15
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.3-1.5	0.2-0.4	0.7-0.8	0.4-0.5	1.1-1.3
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.026	SE275923.027	SE275923.028	SE275923.029	SE275923.030
pH (1:2)	pH Units	-	4.2	4.5	4.5	4.8	4.5

			TP16	TP16	TP17	TP18	TP18
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.6-0.7	1.3-1.4	0.2-0.4	0.5-0.6	1.7-1.8
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.031	SE275923.032	SE275923.033	SE275923.034	SE275923.035
pH (1:2)	pH Units	-	7.1	4.5	5.2	4.7	4.6

pH in soil (1:2) [AN101] Tested: 19/12/2024 (continued)

			TP19	TP20	TP20	TP21	TP21
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.6-0.7	1.9-2.1	0.4-0.5	1.4-1.5
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.036	SE275923.037	SE275923.038	SE275923.039	SE275923.040
pH (1:2)	pH Units	-	5.1	5.3	4.7	4.8	4.5

			TP22	TP23	TP24	TP25	TP25
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	0.5-0.6	0.4-0.6	0.4-0.6	2.0-2.3
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.041	SE275923.042	SE275923.043	SE275923.044	SE275923.045
pH (1:2)	pH Units	-	5.3	4.9	4.4	4.8	4.6

			TP26	TP26	BH1	BH1	BH2
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	2.0-2.1	0.5-1.0	1.5-2.0	0.5-1.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.046	SE275923.047	SE275923.048	SE275923.049	SE275923.050
pH (1:2)	pH Units	-	4.9	4.4	4.9	4.5	4.4

			BH2	ВНЗ	ВНЗ	BH4	BH4
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.5-2.0	0.5-1.0	3.0-3.5	0.5-1.0	2.5-3.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.051	SE275923.052	SE275923.053	SE275923.054	SE275923.055
pH (1:2)	pH Units	-	4.6	4.1	4.5	4.8	5.7

			BH5	BH6	BH6	BH7	BH7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.6	0.5-0.95	2.5-2.6	0.4-0.5	1.5-1.85
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.056	SE275923.057	SE275923.058	SE275923.059	SE275923.060
pH (1:2)	pH Units	-	5.1	4.8	5.4	5.0	5.2

			BH8
			SOIL 0.5-1.0 13/12/2024
PARAMETER	UOM	LOR	SE275923.061
pH (1:2)	pH Units	-	4.7

Conductivity and TDS by Calculation - Soil [AN106] Tested: 19/12/2024

			TP1	TP1	TP2	TP2	TP3
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.5	1.5-1.7	0.4-0.6	1.8-2.0	0.4-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.001	SE275923.002	SE275923.003	SE275923.004	SE275923.005
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	350	260	430	650	130

			TP3	TP4	TP4	TP5	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.8-2.0	0.5-0.7	1.7-1.9	0.3-0.5	0.9-1.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.006	SE275923.007	SE275923.008	SE275923.009	SE275923.010
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	240	1100	1100	130	130

			TP6	TP6	TP7	TP7	TP8
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.7	2.0-2.2	0.5-0.7	1.8-2.0	0.5-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.011	SE275923.012	SE275923.013	SE275923.014	SE275923.015
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	1200	910	440	720	340

			TP8	TP9	TP9	TP10	TP10
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.4-1.5	0.5-0.6	1.8-2.0	0.5-0.7	1.4-1.5
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.016	SE275923.017	SE275923.018	SE275923.019	SE275923.020
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	560	190	540	220	520

			TP11	TP11	TP12	TP12	TP13
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	1.2-1.4	0.4-0.5	0.8-1.0	0.4-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.021	SE275923.022	SE275923.023	SE275923.024	SE275923.025
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	100	230	490	230	180

			TP13	TP14	TP14	TP15	TP15
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.3-1.5	0.2-0.4	0.7-0.8	0.4-0.5	1.1-1.3
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.026	SE275923.027	SE275923.028	SE275923.029	SE275923.030
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	160	560	200	82	78

			TP16	TP16	TP17	TP18	TP18
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.6-0.7	1.3-1.4	0.2-0.4	0.5-0.6	1.7-1.8
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.031	SE275923.032	SE275923.033	SE275923.034	SE275923.035
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	170	170	60	130	460

Conductivity and TDS by Calculation - Soil [AN106] Tested: 19/12/2024 (continued)

			TP19	TP20	TP20	TP21	TP21
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.6-0.7	1.9-2.1	0.4-0.5	1.4-1.5
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.036	SE275923.037	SE275923.038	SE275923.039	SE275923.040
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	94	470	610	270	230

			TP22	TP23	TP24	TP25	TP25
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	0.5-0.6	0.4-0.6	0.4-0.6	2.0-2.3
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.041	SE275923.042	SE275923.043	SE275923.044	SE275923.045
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	150	140	110	280	330

			TP26	TP26	BH1	BH1	BH2
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	2.0-2.1	0.5-1.0	1.5-2.0	0.5-1.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.046	SE275923.047	SE275923.048	SE275923.049	SE275923.050
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	160	810	410	490	490

			BH2	BH3	BH3	BH4	BH4
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.5-2.0	0.5-1.0	3.0-3.5	0.5-1.0	2.5-3.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.051	SE275923.052	SE275923.053	SE275923.054	SE275923.055
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	330	1100	870	160	390

			BH5	BH6	BH6	BH7	BH7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.6	0.5-0.95	2.5-2.6	0.4-0.5	1.5-1.85
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.056	SE275923.057	SE275923.058	SE275923.059	SE275923.060
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	97	130	38	36	24

			BH8
			SOIL 0.5-1.0 13/12/2024
PARAMETER	UOM	LOR	SE275923.061
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	50

TP3

TP2

TP1

Conductivity (1:2) in soil [AN106] Tested: 19/12/2024

Assatt File U.Gdl 1.0.2 1.0.2.2.2.3 0.4.2.6 1.0.2.2.3 0.4.2.6 1.0.2.2.3 0.4.2.6 1.0.2.2.3 0.4.2.6 1.0.2.2.3 0.4.2.6 1.0.2.2.3 0.4.2.6 </th <th></th> <th></th> <th></th> <th>SOIL</th> <th>SOIL</th> <th>SOIL</th> <th>SOIL</th> <th>SOIL</th>				SOIL	SOIL	SOIL	SOIL	SOIL
PRAAMETER ODM COT SET/RELING				0.4-0.5	1.5-1.7	0.4-0.6	1.8-2.0	0.4-0.6
Conduction (2) 496 0.0° Life 1 440 440 460 660 960 220 Xessarde (12)************************************	PARAMETER	ИОМ	LOR					
Example (12)* dmm - 2200 2000 1900 1900 4690 AGAAMETER UDA C.CO 901L 1744 1744 1744 1745 1745 AGAAMETER UDA C.CO 1120204 901L 002L 002L 002L 902L								
BOIL DAAMATER BOIL 12-21 13100004 BOIL 12-21 1310004 BOIL 12-21 1310004 BOIL 12-21 1310004 BOIL 12-21 1310004 BOIL 12-21 1310004 BOIL 12-21 13-2-01 13-2-01 BOIL 12-221 13-2-01 BOIL 13-2-01 13-2-01 BO	Resistivity (1:2)*	ohm cm	-					
BOIL DAAMATER BOIL 12-21 13100004 BOIL 12-21 1310004 BOIL 12-21 1310004 BOIL 12-21 1310004 BOIL 12-21 1310004 BOIL 12-21 1310004 BOIL 12-21 13-2-01 13-2-01 BOIL 12-221 13-2-01 BOIL 13-2-01 13-2-01 BO					·			,
18-20 1940.AMETER 0.001 100 1.001 100 0.003 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 0.001 100 <				TP3	TP4	TP4	TP5	TP5
18-20 1940.AMETER 0.001 100 1.001 100 0.003 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 0.001 100 <				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOX LOR SET7923.00 SET7923.00 <thset7923.00< th=""> <thset7923.00< th=""></thset7923.00<></thset7923.00<>				1.8-2.0	0.5-0.7	1.7-1.9	0.3-0.5	0.9-1.0
Conductive (1:2) (2:3) (2:1) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (2:3) (PARAMETER	иом	LOR					
Energie (12)* ohm om · 2100 600 550 560 4600 PRAAMETER UOM UOM UOM 560						Ĭ	Î.	
SOIL 0.637 SOIL 2.0-23 SOIL 2.0-23 SOIL 19.200 9.9700/4 SOIL 19.200/4 SOIL 19.200/4 <td>Resistivity (1:2)*</td> <td>ohm cm</td> <td>-</td> <td>2100</td> <td>600</td> <td>550</td> <td>5900</td> <td>4600</td>	Resistivity (1:2)*	ohm cm	-	2100	600	550	5900	4600
SOIL 0.637 SOIL 2.0-23 SOIL 2.0-23 SOIL 19.200 9.9700/4 SOIL 19.200/4 SOIL 19.200/4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
PARAMETER UOM LOR 20.207 20.20 95.07 18.20 0.5.66 Conscilletly (12) (25.5C* uplotem 1 1300 1500 8827892.013 8277892.013 827892.014 827892.018 82789				TP6	TP6	TP7	TP7	TP8
PARAMETER UOM LOR LOR 191/20024				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SET7992.011 SET7992.012 SET7992.013 SET7992.014								
Constructively (12) (28 °C μ) μStem 1 1800 1500 680 1600 470 Readsony (12) ahm on . 550 680 1500 840 2200 Readsony (12) ahm on . 550 680 1500 840 2200 Readsony (12) TP9 TP9 TP9 TP10 TP10 SOIL	PARAMETER	UOM	LOR					
TP3 TP3 TP3 TP10 TP10 SOL SOL <td></td> <td>µS/cm</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>		µS/cm	1					
SOIL 1.4.15 13/12/2024 SOIL 1.4.15 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 13/12/2024 SOIL 13/12/20	Resistivity (1:2)*	ohm cm	-	550	660	1500	640	2200
SOIL 1.4.15 13/12/2024 SOIL 1.4.15 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 1.6.26 13/12/2024 SOIL 13/12/2024 SOIL 13/12/20				-				
141-15 0-0.6 182.0 0-50.7 14-15 131/2004 131/2004 131/2004 131/2004 131/2004 131/2004 PARAMETER LOM LOR 870 240 820 380 650 Residuity (1:2)* othm cm - 1100 4200 1200 2800 1860 PARAMETER UOM LOR SE27592.3.01 SE27592.3.01 SE27592.3.01 SE27592.3.01 PARAMETER UOM LOR SE27692.3.01 SOIL				TP8	ТР9	TP9	TP10	TP10
NARAMETER UOM LOR SE27993.016 19/12/024 19/12/0				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SEZ7992.016 SEZ7992.019 SEZ7992.019 SEZ7992.019 Conductivy (12) (25 C* µSiom 1 870 240 820 380 650 Residuity (12)* ohm om - 1100 4200 1200 2800 1600 Residuity (12)* ohm om - 1100 4200 1200 2800 1600 PARAMETER UOM LOR Scill Soill Soill Soill Soill 0.4.0.5 0.4.1.4 0.4.0.5 0.4.1.0 0.4.0.5 13122004 13122024 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Conductivity (12) μSicm 1 870 240 820 380 650 Resistivity (12)* ohm cm - 1100 4200 1200 2800 1600 Resistivity (12)* ohm cm - 1100 4200 1200 2800 1600 Resistivity (12)* ohm cm - TP11 TP12 TP12 TP13 PARAMETER UOM LOR SCIL SCIL SCIL 0.4-0.5 0.8-1.0 0.4-0.6 Conductivity (12)* g25 C* µSicm 1 150 370 1100 770 270 Resistivity (12)* ohm cm - 8680 2700 950 1300 3800 PARAMETER UOM LOR SCIL SCIL <td>PARAMETER</td> <td>UOM</td> <td>LOR</td> <td></td> <td></td> <td></td> <td></td> <td></td>	PARAMETER	UOM	LOR					
TP11 TP11 TP12 TP12 TP13 PARAMETER UOM LOR SOIL 0.4.9.6 PARAMETER UOM LOR SE275923.021 SE275923.023 SE275923.023 SE275923.024 SE275923.023 SE275923.024 SE275923.025 Conductivity (12) @25 C* µS/cm 1 150 370 1100 770 270 Resistivity (12)* ohm cm - 6600 2700 350 1300 3800 PARAMETER UOM LOR SE275923.025 SOIL S								
SOIL 03-0.5 13/12/2024 SOIL 13/12/2024 SOIL 03-0.5 13/12/2024 SOIL 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 SOIL 0.4-0.5 SOIL 0.4-0.5 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL	Resistivity (1:2)*	ohm cm	-	1100	4200	1200	2600	1600
SOIL 03-0.5 13/12/2024 SOIL 13/12/2024 SOIL 03-0.5 13/12/2024 SOIL 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 0.4-0.5 SOIL 0.4-0.5 SOIL 0.4-0.5 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL 0.4-0.5 SOIL 13/12/2024 SOIL								
PARAMETER UOM LOR 5227923.021 12.14 0.4-0.5 0.8-1.0 0.4-0.6 Conductivity (1:2) @25 C* µSicm 1 150 370 1100 770 270 Resistivity (1:2)* ohm cm - 6600 2700 950 1300 3800 PARAMETER UOM LOR SEZT932.021 SCT932.023 SEZT932.023 SEZT932.024 SEZT932.024 Conductivity (1:2)* ohm cm - 6600 2700 950 1300 3800 PARAMETER UOM LOR SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL 1.1-1.3 13/12/2024				TP11	TP11	TP12	TP12	TP13
PARAMETER UOM LOR 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 Conductivity (1:2) @25 C* µS/cm 1 150 370 1100 770 270 Resistivity (1:2)* ohm cm - 6600 2700 950 1300 3800 PARAMETER TP13 TP14 TP14 TP15 SOIL SOI				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SE275923.021 SE275923.022 SE275923.023 SE275923.024 SE275923.025 Conductivity (1:2) @25 C* µS/cm 1 150 370 1100 770 270 Resistivity (1:2)* ohm cm - 6600 2700 950 1300 3800 TP13 TP14 TP14 TP15 TP15 SOIL SOIL SOIL SOIL SOIL SOIL SOIL 13/12/2024 <								
Resistivity (1:2)* ohm cm - 6600 2700 950 1300 3800 TP13 TP14 TP14 TP15 TP15 SOIL SO	PARAMETER	UOM	LOR					
TP13 TP14 TP14 TP15 TP15 SOIL S	Conductivity (1:2) @25 C*	µS/cm	1	150	370	1100	770	270
SOIL 1.3.1.5 31/12/2024 SOIL 0.2-0.4 13/12/2024 SOIL 0.7-0.8 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 1.1.1.3 13/12/2024 PARAMETER UOM LOR SE275923.026 SE275923.027 SE275923.028 SE275923.029 SE275923.029 SE275923.029 SE275923.029 SE275923.029 SE275923.029 SE275923.030 Conductivity (1:2) @25 C* μS/cm 1 330 960 350 110 230 Resistivity (1:2)* ohm cm - 3100 1000 2900 9100 4300 VOM LOR SOIL SOIL SOIL SOIL SOIL SOIL 3100 1000 2900 9100 4300 VOM LOR SOIL	Resistivity (1:2)*	ohm cm	-	6600	2700	950	1300	3800
SOIL 1.3.1.5 31/12/2024 SOIL 0.2-0.4 13/12/2024 SOIL 0.7-0.8 13/12/2024 SOIL 0.4-0.5 13/12/2024 SOIL 1.1.1.3 13/12/2024 PARAMETER UOM LOR SE275923.026 SE275923.027 SE275923.028 SE275923.029 SE275923.029 SE275923.029 SE275923.029 SE275923.029 SE275923.029 SE275923.030 Conductivity (1:2) @25 C* μS/cm 1 330 960 350 110 230 Resistivity (1:2)* ohm cm - 3100 1000 2900 9100 4300 VOM LOR SOIL SOIL SOIL SOIL SOIL SOIL 3100 1000 2900 9100 4300 VOM LOR SOIL					1			
1.3.1.5 0.2-0.4 0.7-0.8 0.4-0.5 1.1.1.3 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 PARAMETER UOM LOR SE275923.026 SE275923.027 SE275923.028 SE275923.029 SE275923.030 Conductivity (1:2) @25 C* μS/cm 1 330 960 350 110 230 Resistivity (1:2)* ohm cm - 3100 1000 2900 9100 4300 VOM LOR SOIL SE275923.033 SE275923.034 SE275923.034 PARAMETER UOM LOR SE275923.031 SE275923.033 SE275923.033 SE275923.034 SE275923.035 Conductivity (1:2) @25 C* μS/cm 1 260 280 96 220				TP13	TP14	TP14	TP15	TP15
PARAMETER UOM LOR 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 SE275923.028 SE275923.029 SE275923.030 Conductivity (1:2) @25 C* μS/cm 1 330 960 350 110 230 Resistivity (1:2)* ohm cm - 3100 1000 2900 9100 4300 VOM LOR SOIL 13/12/2024 1				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SE275923.026 SE275923.027 SE275923.028 SE275923.029 SE275923.030 Conductivity (1:2) @25 C* μS/cm 1 330 960 350 110 230 Resistivity (1:2)* ohm cm - 3100 1000 2900 9100 4300 Resistivity (1:2)* ohm cm - 3100 1000 2900 9100 4300 Resistivity (1:2)* ohm cm - SOIL TP16 TP17 TP18 TP18 PARAMETER UOM LOR SOIL SOIL SOIL SOIL SOIL SOIL 13/12/2024								
Resistivity (1:2)* ohm cm - 3100 1000 2900 9100 4300 TP16 TP16 TP17 TP18 TP18 SOIL	PARAMETER	UOM	LOR					
TP16 TP16 TP16 TP17 TP18 TP18 SOIL S	Conductivity (1:2) @25 C*	µS/cm	1	330	960	350	110	230
SOIL SOIL <t< td=""><td>Resistivity (1:2)*</td><td>ohm cm</td><td>-</td><td>3100</td><td>1000</td><td>2900</td><td>9100</td><td>4300</td></t<>	Resistivity (1:2)*	ohm cm	-	3100	1000	2900	9100	4300
SOIL SOIL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
0.6-0.7 1.3-1.4 0.2-0.4 0.5-0.6 1.7-1.8 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 13/12/2024 PARAMETER UOM LOR SE275923.031 SE275923.032 SE275923.033 SE275923.034 SE275923.034 Conductivity (1:2) @25 C* µS/cm 1 260 280 96 220 900				TP16	TP16	TP17	TP18	TP18
13/12/2024 SE275923.033 SE275923.034 SE275923.035 SE275923.035 SE275923.035 SE275923.035 SE275923.035 SE275923.035 SE275923.035 SE275923.036 SE275923.036 SE275923.036 SE275923.036 SE275923.035 SE275923.035 SE275923.036 SE2759				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SE275923.031 SE275923.032 SE275923.033 SE275923.034 SE275923.035 Conductivity (1:2) @25 C* μS/cm 1 260 280 96 220 900								
Conductivity (1:2) @25 C* μS/cm 1 260 280 96 220 900	PARAMETER	UOM	LOR					
Resistivity (1:2)* ohm cm - 3900 3600 10000 4500 1100						i i i i i i i i i i i i i i i i i i i		
	Resistivity (1:2)*	ohm cm	-	3900	3600	10000	4500	1100

Conductivity (1:2) in soil [AN106] Tested: 19/12/2024 (continued)

			TP19	TP20	TP20	TP21	TP21
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.6-0.7	1.9-2.1	0.4-0.5	1.4-1.5
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.036	SE275923.037	SE275923.038	SE275923.039	SE275923.040
Conductivity (1:2) @25 C*	µS/cm	1	130	770	1300	430	460
Resistivity (1:2)*	ohm cm	-	7600	1300	760	2300	2200

			TP22	TP23	TP24	TP25	TP25
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	0.5-0.6	0.4-0.6	0.4-0.6	2.0-2.3
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.041	SE275923.042	SE275923.043	SE275923.044	SE275923.045
Conductivity (1:2) @25 C*	µS/cm	1	240	220	160	550	590
Resistivity (1:2)*	ohm cm	-	4100	4500	6200	1800	1700

			TP26	TP26	BH1	BH1	BH2
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	2.0-2.1	0.5-1.0	1.5-2.0	0.5-1.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.046	SE275923.047	SE275923.048	SE275923.049	SE275923.050
Conductivity (1:2) @25 C*	µS/cm	1	220	1200	570	780	720
Resistivity (1:2)*	ohm cm	-	4500	810	1800	1300	1400

			BH2	BH3	BH3	BH4	BH4
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.5-2.0	0.5-1.0	3.0-3.5	0.5-1.0	2.5-3.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.051	SE275923.052	SE275923.053	SE275923.054	SE275923.055
Conductivity (1:2) @25 C*	µS/cm	1	580	2000	1900	270	710
Resistivity (1:2)*	ohm cm	-	1700	510	540	3700	1400

			BH5	BH6	BH6	BH7	BH7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.6	0.5-0.95	2.5-2.6	0.4-0.5	1.5-1.85
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.056	SE275923.057	SE275923.058	SE275923.059	SE275923.060
Conductivity (1:2) @25 C*	µS/cm	1	200	190	95	69	75
Resistivity (1:2)*	ohm cm	-	5000	5200	11000	14000	13000

			BH8
PARAMETER	UOM	LOR	SOIL 0.5-1.0 13/12/2024 SE275923.061
Conductivity (1:2) @25 C*	µS/cm	1	89
Resistivity (1:2)*	ohm cm	-	11000

Moisture Content [AN002] Tested: 18/12/2024

			TP1	TP1	TP2	TP2	TP3
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.5	1.5-1.7	0.4-0.6	1.8-2.0	0.4-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.001	SE275923.002	SE275923.003	SE275923.004	SE275923.005
% Moisture	%w/w	1	21.5	16.2	16.7	13.0	20.8

			TP3	TP4	TP4	TP5	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.8-2.0	0.5-0.7	1.7-1.9	0.3-0.5	0.9-1.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.006	SE275923.007	SE275923.008	SE275923.009	SE275923.010
% Moisture	%w/w	1	16.8	20.2	19.1	19.7	11.6

			TP6	TP6	TP7	TP7	TP8
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.7	2.0-2.2	0.5-0.7	1.8-2.0	0.5-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.011	SE275923.012	SE275923.013	SE275923.014	SE275923.015
% Moisture	%w/w	1	19.1	13.9	17.1	19.8	16.8

			TP8	TP9	TP9	TP10	TP10
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.4-1.5	0.5-0.6	1.8-2.0	0.5-0.7	1.4-1.5
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.016	SE275923.017	SE275923.018	SE275923.019	SE275923.020
% Moisture	%w/w	1	11.2	15.4	13.2	11.1	19.1

			TP11	TP11	TP12	TP12	TP13
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	1.2-1.4	0.4-0.5	0.8-1.0	0.4-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.021	SE275923.022	SE275923.023	SE275923.024	SE275923.025
% Moisture	%w/w	1	19.0	14.4	19.0	10.9	15.9

			TP13	TP14	TP14	TP15	TP15
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.3-1.5	0.2-0.4	0.7-0.8	0.4-0.5	1.1-1.3
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.026	SE275923.027	SE275923.028	SE275923.029	SE275923.030
% Moisture	%w/w	1	12.2	20.3	16.6	18.6	15.9

			TP16	TP16	TP17	TP18	TP18
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.6-0.7	1.3-1.4	0.2-0.4	0.5-0.6	1.7-1.8
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.031	SE275923.032	SE275923.033	SE275923.034	SE275923.035
% Moisture	%w/w	1	22.5	19.8	9.3	15.7	13.1

Moisture Content [AN002] Tested: 18/12/2024 (continued)

			TP19	TP20	TP20	TP21	TP21
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.6-0.7	1.9-2.1	0.4-0.5	1.4-1.5
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.036	SE275923.037	SE275923.038	SE275923.039	SE275923.040
% Moisture	%w/w	1	18.4	15.5	16.5	22.9	20.3

			TP22	TP23	TP24	TP25	TP25
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	0.5-0.6	0.4-0.6	0.4-0.6	2.0-2.3
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.041	SE275923.042	SE275923.043	SE275923.044	SE275923.045
% Moisture	%w/w	1	13.5	15.3	18.7	14.1	17.6

			TP26	TP26	BH1	BH1	BH2
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	2.0-2.1	0.5-1.0	1.5-2.0	0.5-1.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.046	SE275923.047	SE275923.048	SE275923.049	SE275923.050
% Moisture	%w/w	1	14.8	17.6	16.8	18.7	15.9

			BH2	ВНЗ	ВНЗ	BH4	BH4
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.5-2.0	0.5-1.0	3.0-3.5	0.5-1.0	2.5-3.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.051	SE275923.052	SE275923.053	SE275923.054	SE275923.055
% Moisture	%w/w	1	11.5	19.9	12.7	8.7	14.0

			BH5	BH6	BH6	BH7	BH7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.6	0.5-0.95	2.5-2.6	0.4-0.5	1.5-1.85
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.056	SE275923.057	SE275923.058	SE275923.059	SE275923.060
% Moisture	%w/w	1	8.5	13.0	8.6	10.2	9.6

			BH8
			SOIL 0.5-1.0 13/12/2024
PARAMETER	UOM	LOR	SE275923.061
% Moisture	%w/w	1	10.3

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography [AN245] Tested: 20/12/2024

			TP1	TP1	TP2	TP2	TP3
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.5	1.5-1.7	0.4-0.6	1.8-2.0	0.4-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.001	SE275923.002	SE275923.003	SE275923.004	SE275923.005
Chloride Sulfate	mg/kg mg/kg	0.25	270	330	310	660	44
Jundle	ilig/kg	0.5	180	36	280	190	180
			TP3	TP4	TP4	TP5	TP5
			15	1174	1174	15	15
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.8-2.0 13/12/2024	0.5-0.7 13/12/2024	1.7-1.9 13/12/2024	0.3-0.5 13/12/2024	0.9-1.0 13/12/2024
PARAMETER	UOM	LOR	SE275923.006	SE275923.007	SE275923.008	SE275923.009	SE275923.010
Chloride	mg/kg	0.25	310	1300	1300	14	9.8
Sulfate	mg/kg	0.5	74	250	290	140	170
			TP6	TP6	TP7	TP7	TP8
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.7	2.0-2.2	0.5-0.7	1.8-2.0	0.5-0.6
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER Chloride	UOM mg/kg	LOR 0.25	SE275923.011 1400	SE275923.012 1200	SE275923.013 400	SE275923.014 1000	SE275923.015 210
Sulfate	mg/kg	0.5	260	1200	220	140	210
			200	100	220	140	200
			TP8	ТР9	TP9	TP10	TP10
			SOIL 1.4-1.5	SOIL 0.5-0.6	SOIL 1.8-2.0	SOIL 0.5-0.7	SOIL 1.4-1.5
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.016	SE275923.017	SE275923.018	SE275923.019	SE275923.020
Chloride	mg/kg	0.25	460	69	560	110	300
Sulfate	mg/kg	0.5	230	150	130	130	300
							==
			TP11	TP11	TP12	TP12	TP13
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	1.2-1.4	0.4-0.5	0.8-1.0	0.4-0.6
PARAMETER	UOM	LOR	13/12/2024 SE275923.021	13/12/2024 SE275923.022	13/12/2024 SE275923.023	13/12/2024 SE275923.024	13/12/2024 SE275923.025
Chloride	mg/kg	0.25	18	55	570	480	48
Sulfate	mg/kg	0.5	120	220	73	47	180
			TP13	TP14	TP14	TP15	TP15
			001	0.01	001	0.01	001
			SOIL 1.3-1.5	SOIL 0.2-0.4	SOIL 0.7-0.8	SOIL 0.4-0.5	SOIL 1.1-1.3
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.026	SE275923.027	SE275923.028	SE275923.029	SE275923.030
Chloride	mg/kg	0.25	200	800	240	16	120
Sulfate	mg/kg	0.5	12	15	16	73	36

			TP16	TP16	TP17	TP18	TP18
			SOIL 0.6-0.7	SOIL 1.3-1.4	SOIL 0.2-0.4	SOIL 0.5-0.6	SOIL 1.7-1.8
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.031	SE275923.032	SE275923.033	SE275923.034	SE275923.035
Chloride	mg/kg	0.25	13	14	14	27	530
Sulfate	mg/kg	0.5	98	210	30	140	190

SE275923 R0

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography [AN245] Tested: 20/12/2024 (continued)

			TP19	TP20	TP20	TP21	TP21
PARAMETER	UOM	LOR	SOIL 0.5-0.6 13/12/2024 SE275923.036	SOIL 0.6-0.7 13/12/2024 SE275923.037	SOIL 1.9-2.1 13/12/2024 SE275923.038	SOIL 0.4-0.5 13/12/2024 SE275923.039	SOIL 1.4-1.5 13/12/2024 SE275923.040
Chloride	mg/kg	0.25	14	560	820	330	310
Sulfate	mg/kg	0.5	93	77	20	13	8.8

			TP22	TP23	TP24	TP25	TP25
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	0.5-0.6	0.4-0.6	0.4-0.6	2.0-2.3
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.041	SE275923.042	SE275923.043	SE275923.044	SE275923.045
Chloride	mg/kg	0.25	37	34	90	440	450
Sulfate	mg/kg	0.5	43	40	11	39	3.9

			TP26	TP26	BH1	BH1	BH2
			001	001	001		001
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	2.0-2.1	0.5-1.0	1.5-2.0	0.5-1.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.046	SE275923.047	SE275923.048	SE275923.049	SE275923.050
Chloride	mg/kg	0.25	120	1100	290	310	350
Sulfate	mg/kg	0.5	17	13	240	220	220

			BH2	ВНЗ	BH3	BH4	BH4
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.5-2.0	0.5-1.0	3.0-3.5	0.5-1.0	2.5-3.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.051	SE275923.052	SE275923.053	SE275923.054	SE275923.055
Chloride	mg/kg	0.25	290	820	820	27	310
Sulfate	mg/kg	0.5	180	520	180	180	180

			BH5	BH6	BH6	BH7	BH7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.6	0.5-0.95	2.5-2.6	0.4-0.5	1.5-1.85
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.056	SE275923.057	SE275923.058	SE275923.059	SE275923.060
Chloride	mg/kg	0.25	75	150	22	12	21
Sulfate	mg/kg	0.5	51	3.1	48	40	13

			BH8
			SOIL 0.5-1.0
			13/12/2024
PARAMETER	UOM	LOR	SE275923.061
Chloride	mg/kg	0.25	27
Sulfate	mg/kg	0.5	17

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 20/12/2024

			TP1 SOIL 0.4-0.5	TP1 SOIL 1.5-1.7	TP2 SOIL 0.4-0.6	TP3 SOIL 0.4-0.6	TP4 SOIL 0.5-0.7
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.001	SE275923.002	SE275923.003	SE275923.005	SE275923.007
Exchangeable Calcium, Ca	mg/kg	2	370	26	240	980	350
Exchangeable Calcium, Ca	meq/100g	0.01	1.8	0.13	1.2	4.9	1.8
Exchangeable Calcium Percentage*	%	0.1	19.4	1.4	9.7	36.8	8.8
Exchangeable Potassium, K	mg/kg	2	120	160	130	120	140
Exchangeable Potassium, K	meq/100g	0.01	0.30	0.42	0.34	0.31	0.36
Exchangeable Potassium Percentage*	%	0.1	3.2	4.4	2.7	2.3	1.8
Exchangeable Magnesium, Mg	mg/kg	2	490	660	920	760	1300
Exchangeable Magnesium, Mg	meq/100g	0.02	4.0	5.4	7.5	6.3	10
Exchangeable Magnesium Percentage*	%	0.1	42.7	56.3	60.5	46.8	52.4
Exchangeable Sodium, Na	mg/kg	2	750	840	780	430	1700
Exchangeable Sodium, Na	meq/100g	0.01	3.3	3.7	3.4	1.9	7.3
Exchangeable Sodium Percentage*	%	0.1	34.7	38.0	27.1	14.1	37.0
Cation Exchange Capacity	meq/100g	0.02	9.4	9.6	12	13	20

			TP4	TP5	TP6	TP7	TP8
PARAMETER	UOM	LOR	SOIL 1.7-1.9 13/12/2024 SE275923.008	SOIL 0.9-1.0 13/12/2024 SE275923.010	SOIL 0.5-0.7 13/12/2024 SE275923.011	SOIL 0.5-0.7 13/12/2024 SE275923.013	SOIL 0.5-0.6 13/12/2024 SE275923.015
Exchangeable Calcium, Ca	mg/kg	2	39	180	430	320	990
Exchangeable Calcium, Ca	meq/100g	0.01	0.20	0.89	2.1	1.6	5.0
Exchangeable Calcium Percentage*	%	0.1	1.1	11.5	11.1	10.4	20.0
Exchangeable Potassium, K	mg/kg	2	120	110	220	80	140
Exchangeable Potassium, K	meq/100g	0.01	0.30	0.29	0.55	0.20	0.35
Exchangeable Potassium Percentage*	%	0.1	1.7	3.8	2.9	1.3	1.4
Exchangeable Magnesium, Mg	mg/kg	2	1100	610	1200	1200	1900
Exchangeable Magnesium, Mg	meq/100g	0.02	9.4	5.0	9.8	9.7	16
Exchangeable Magnesium Percentage*	%	0.1	53.5	65.2	50.7	62.5	62.5
Exchangeable Sodium, Na	mg/kg	2	1800	350	1600	920	920
Exchangeable Sodium, Na	meq/100g	0.01	7.6	1.5	6.8	4.0	4.0
Exchangeable Sodium Percentage*	%	0.1	43.6	19.5	35.4	25.8	16.1
Cation Exchange Capacity	meq/100g	0.02	17	7.7	19	16	25

			TP8	TP9	TP10	TP11	TP12
PARAMETER	UOM	LOR	SOIL 1.4-1.5 13/12/2024 SE275923.016	SOIL 0.5-0.6 13/12/2024 SE275923.017	SOIL 0.5-0.7 13/12/2024 SE275923.019	SOIL 1.2-1.4 13/12/2024 SE275923.022	SOIL 0.4-0.5 13/12/2024 SE275923.023
Exchangeable Calcium, Ca	mg/kg	2	220	110	220	47	220
Exchangeable Calcium, Ca	meq/100g	0.01	1.1	0.53	1.1	0.23	1.1
Exchangeable Calcium Percentage*	%	0.1	8.9	5.2	22.9	2.0	7.3
Exchangeable Potassium, K	mg/kg	2	120	160	390	310	100
Exchangeable Potassium, K	meq/100g	0.01	0.30	0.40	1.0	0.78	0.27
Exchangeable Potassium Percentage*	%	0.1	2.4	3.9	20.8	6.6	1.8
Exchangeable Magnesium, Mg	mg/kg	2	890	840	230	860	1100
Exchangeable Magnesium, Mg	meq/100g	0.02	7.3	6.9	1.9	7.1	8.8
Exchangeable Magnesium Percentage*	%	0.1	59.5	66.7	39.9	59.9	59.5
Exchangeable Sodium, Na	mg/kg	2	820	570	180	860	1100
Exchangeable Sodium, Na	meq/100g	0.01	3.6	2.5	0.79	3.7	4.6
Exchangeable Sodium Percentage*	%	0.1	29.2	24.3	16.4	31.4	31.4
Cation Exchange Capacity	meq/100g	0.02	12	10	4.8	12	15

SE275923 R0

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 20/12/2024 (continued)

			TP13	TP14	TP15	TP15	TP16
PARAMETER	UOM	LOR	SOIL 0.4-0.6 13/12/2024 SE275923.025	SOIL 0.7-0.8 13/12/2024 SE275923.028	SOIL 0.4-0.5 13/12/2024 SE275923.029	SOIL 1.1-1.3 13/12/2024 SE275923.030	SOIL 0.6-0.7 13/12/2024 SE275923.031
Exchangeable Calcium, Ca	mg/kg	2	320	68	410	13	1600
Exchangeable Calcium, Ca	meq/100g	0.01	1.6	0.34	2.0	0.07	7.8
Exchangeable Calcium Percentage*	%	0.1	20.8	4.6	28.0	1.1	41.8
Exchangeable Potassium, K	mg/kg	2	130	110	84	99	740
Exchangeable Potassium, K	meq/100g	0.01	0.32	0.27	0.22	0.25	1.9
Exchangeable Potassium Percentage*	%	0.1	4.1	3.6	3.0	4.5	10.2
Exchangeable Magnesium, Mg	mg/kg	2	470	570	510	420	1000
Exchangeable Magnesium, Mg	meq/100g	0.02	3.9	4.7	4.2	3.4	8.2
Exchangeable Magnesium Percentage*	%	0.1	49.4	62.7	57.7	60.5	43.9
Exchangeable Sodium, Na	mg/kg	2	460	500	190	440	180
Exchangeable Sodium, Na	meq/100g	0.01	2.0	2.2	0.82	1.9	0.79
Exchangeable Sodium Percentage*	%	0.1	25.7	29.2	11.3	33.9	4.2
Cation Exchange Capacity	meq/100g	0.02	7.8	7.5	7.3	5.7	19

			TP16	TP17	TP18	TP19	TP20
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.3-1.4	0.2-0.4	0.5-0.6	0.5-0.6	0.6-0.7
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.032	SE275923.033	SE275923.034	SE275923.036	SE275923.037
Exchangeable Calcium, Ca	mg/kg	2	540	730	380	510	280
Exchangeable Calcium, Ca	meq/100g	0.01	2.7	3.7	1.9	2.5	1.4
Exchangeable Calcium Percentage*	%	0.1	25.8	53.1	16.5	23.5	12.0
Exchangeable Potassium, K	mg/kg	2	530	200	75	55	130
Exchangeable Potassium, K	meq/100g	0.01	1.4	0.50	0.19	0.14	0.34
Exchangeable Potassium Percentage*	%	0.1	12.9	7.3	1.7	1.3	3.0
Exchangeable Magnesium, Mg	mg/kg	2	700	300	900	820	780
Exchangeable Magnesium, Mg	meq/100g	0.02	5.8	2.5	7.4	6.8	6.4
Exchangeable Magnesium Percentage*	%	0.1	54.4	35.6	64.6	62.8	55.6
Exchangeable Sodium, Na	mg/kg	2	170	64	450	310	770
Exchangeable Sodium, Na	meq/100g	0.01	0.73	0.28	2.0	1.3	3.4
Exchangeable Sodium Percentage*	%	0.1	6.9	4.0	17.2	12.4	29.3
Cation Exchange Capacity	meq/100g	0.02	11	6.9	11	11	11

			TP21	TP21	TP22	TP23	TP24
PARAMETER	UOM	LOR	SOIL 0.4-0.5 13/12/2024 SE275923.039	SOIL 1.4-1.5 13/12/2024 SE275923.040	SOIL 0.3-0.5 13/12/2024 SE275923.041	SOIL 0.5-0.6 13/12/2024 SE275923.042	SOIL 0.4-0.6 13/12/2024 SE275923.043
Exchangeable Calcium, Ca	mg/kg	2	170	14	530	110	110
Exchangeable Calcium, Ca	meq/100g	0.01	0.85	0.07	2.6	0.57	0.57
Exchangeable Calcium Percentage*	%	0.1	8.4	0.7	29.0	6.2	10.4
Exchangeable Potassium, K	mg/kg	2	80	99	110	130	180
Exchangeable Potassium, K	meq/100g	0.01	0.21	0.25	0.29	0.33	0.47
Exchangeable Potassium Percentage*	%	0.1	2.0	2.5	3.2	3.6	8.6
Exchangeable Magnesium, Mg	mg/kg	2	730	820	530	720	480
Exchangeable Magnesium, Mg	meq/100g	0.02	6.0	6.7	4.3	5.9	4.0
Exchangeable Magnesium Percentage*	%	0.1	59.1	66.2	47.5	64.6	72.2
Exchangeable Sodium, Na	mg/kg	2	710	720	420	540	110
Exchangeable Sodium, Na	meq/100g	0.01	3.1	3.1	1.8	2.4	0.48
Exchangeable Sodium Percentage*	%	0.1	30.4	30.6	20.3	25.6	8.8
Cation Exchange Capacity	meq/100g	0.02	10	10	9.1	9.2	5.5

SE275923 R0

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 20/12/2024 (continued)

			TP25 SOIL 0.4-0.6	TP26 SOIL 0.5-0.6	BH1 SOIL 0.5-1.0	BH2 SOIL 0.5-1.0	BH3 SOIL 0.5-1.0
			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
PARAMETER	UOM	LOR	SE275923.044	SE275923.046	SE275923.048	SE275923.050	SE275923.052
Exchangeable Calcium, Ca	mg/kg	2	57	160	120	48	160
Exchangeable Calcium, Ca	meq/100g	0.01	0.28	0.80	0.59	0.24	0.82
Exchangeable Calcium Percentage*	%	0.1	4.2	8.6	6.8	2.2	3.5
Exchangeable Potassium, K	mg/kg	2	54	38	55	200	210
Exchangeable Potassium, K	meq/100g	0.01	0.14	0.10	0.14	0.52	0.53
Exchangeable Potassium Percentage*	%	0.1	2.0	1.0	1.6	4.8	2.2
Exchangeable Magnesium, Mg	mg/kg	2	520	850	570	680	1600
Exchangeable Magnesium, Mg	meq/100g	0.02	4.3	7.0	4.6	5.6	13
Exchangeable Magnesium Percentage*	%	0.1	63.3	75.6	53.8	52.3	55.7
Exchangeable Sodium, Na	mg/kg	2	470	310	750	1000	2100
Exchangeable Sodium, Na	meq/100g	0.01	2.1	1.4	3.3	4.4	9.1
Exchangeable Sodium Percentage*	%	0.1	30.5	14.7	37.8	40.6	38.6
Cation Exchange Capacity	meq/100g	0.02	6.7	9.2	8.6	11	24

			BH4	BH5	BH6	BH7	BH8
PARAMETER	UOM	LOR	SOIL 0.5-1.0 13/12/2024 SE275923.054	SOIL 0.4-0.6 13/12/2024 SE275923.056	SOIL 0.5-0.95 13/12/2024 SE275923.057	SOIL 0.4-0.5 13/12/2024 SE275923.059	SOIL 0.5-1.0 13/12/2024 SE275923.061
Exchangeable Calcium, Ca	mg/kg	2	460	160	14	320	78
Exchangeable Calcium, Ca	meq/100g	0.01	2.3	0.80	0.07	1.6	0.39
Exchangeable Calcium Percentage*	%	0.1	27.9	14.2	1.3	28.3	9.0
Exchangeable Potassium, K	mg/kg	2	250	130	74	110	110
Exchangeable Potassium, K	meq/100g	0.01	0.63	0.33	0.19	0.27	0.28
Exchangeable Potassium Percentage*	%	0.1	7.8	5.8	3.6	4.9	6.4
Exchangeable Magnesium, Mg	mg/kg	2	490	380	460	380	350
Exchangeable Magnesium, Mg	meq/100g	0.02	4.0	3.1	3.7	3.1	2.9
Exchangeable Magnesium Percentage*	%	0.1	49.4	55.1	71.8	56.1	66.3
Exchangeable Sodium, Na	mg/kg	2	280	320	280	140	180
Exchangeable Sodium, Na	meq/100g	0.01	1.2	1.4	1.2	0.59	0.79
Exchangeable Sodium Percentage*	%	0.1	15.0	24.9	23.3	10.6	18.3
Cation Exchange Capacity	meq/100g	0.02	8.2	5.6	5.2	5.6	4.3

AN101 pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and it calibrated agains 13 biffers purchased commercially. For soils, an extract with water is made at a ratio of 1: and the pH determined and reported on the extract after 1 hour extraction (pH 1:2) or after 1 hour extraction and overnight aging (pH (1:2) aged). Reference APHA 4500-H+. AN105 Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and it calibrated agains 12 standard solution of pofassium chloride. Conductivity is generally reported as µmhos /cm (a US/cm (a) 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the E determined and reported on the extract, or acluulated back to the sample. Sample sample. Salinity can be estimate from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B. AN106 Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis. AN106 Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis. AN122 Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 11 Ammonium Chloride at pH=7) with cations (Na, K. Ca & MQ) then determined by ICP OES/ICP MS and reported a Exchangeable Cations in meq/100g or soil can be pre-treated faqueous ethanol/aqueous giveerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meg/100g.	METHOD	METHODOLOGY SUMMARY
AN106 Conductivity and TDS by Calculation: Conductivity is measured by meter with water is made at a ratio of 1: and the pH determined and reported on the extract after 1 hour extraction (pH 1.2) or after 1 hour extraction an overnight aging (pH (1.2) aged). Reference APHA 4500-H+. AN106 Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and it calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm (a µS/cm (@ 25°C. For solis, an extract of as received sample with water is made at a ratio of 1:5 and the E determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimate from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B. AN106 Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis. AN122 Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Chloride at pH=77 with cations (NA, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior t extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g. AN122 The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all i meq/100g) times 100. ESP < 6% non-sodic	AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN106 Calibrated against a standard solution of potassium chioride. Conductivity is generally reported as µmhos /m of µS/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the E determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimate from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Referenc APHA 2510 B. AN106 Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis. AN122 Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 11 Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES//CP MS and reported as Exchangeable Cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior t extraction. Cation Exchange able Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all i meq/100g) times 100. AN122 The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all i meq/100g) times 100. ESP < 6% non-sodic	AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:2 and the pH determined and reported on the extract after 1 hour extraction (pH 1:2) or after 1 hour extraction and overnight aging (pH (1:2) aged). Reference APHA 4500-H+.
AN122 Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 11 Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable Cations. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g. AN122 The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all i meq/100g) times 100. AN122 The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all i meq/100g) times 100. ESP < 6% non-sodic	AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
Amonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported at Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported at Exchangeable cation. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g. AN122 The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all i meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below: ESP c6% non-sodic ESP can be used to categorise the sodicity of the soil as below: ESP c6% non-sodic ESP can be used to categorise the sodicity of the soil as below: Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1 AN245 Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatography: A water sample or extract is Br, CI, NO2, NO3 and SO4 are separated on the relative affinities for the active sites on the column packing material. Changes to the conductivity and the	AN106	Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis.
AN245 Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on the relative affinities for the active sites on the column packing material. Changes to the conductivity and the column packing material.	AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
ESP 6-15% sodic ESP >15% strongly sodic Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1 AN245 Anions by lon Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on the relative affinities for the active sites on the column packing material. Changes to the conductivity and the	AN122	
AN245 Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on the relative affinities for the active sites on the column packing material. Changes to the conductivity and the		ESP 6-15% sodic
the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on the relative affinities for the active sites on the column packing material. Changes to the conductivity and the		Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1
time and peak height or area. APHA 4110 B	AN245	

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.
***	Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for
 LNR analysis.
 Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS
Contact Client Address	Indra Jworchan Geotech Testing Pty Ltd P.O. Box 880 PENRITH NSW 2751	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	20600/2 393 Terrace Road, North Richmond	SGS Reference	SE275923 R0
Order Number	20600/2	Date Received	16 Dec 2024
Samples	61	Date Reported	23 Dec 2024

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	61 Soil	Type of documentation received	COC	
Date documentation received	16/12/2024	Samples received in good order	Yes	
Samples received without headspace	N/A	Sample temperature upon receipt	26.3°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	None	Samples clearly labelled	Yes	
Complete documentation received	Yes	Number of eskies/boxes received		

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia

Australia

0499 Member of the SGS Group

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Conductivity (1:2) in soil

Conductivity (1:2) in soil							Method:	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P1	SE275923.001	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P1	SE275923.002	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P2	SE275923.003	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P2	SE275923.004	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P3	SE275923.005	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P3	SE275923.006	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P4	SE275923.007	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P4	SE275923.008	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P5	SE275923.009	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P5	SE275923.010	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P6	SE275923.011	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P6	SE275923.012	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P7	SE275923.013	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P7	SE275923.014	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P8	SE275923.015	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P8	SE275923.016	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P9	SE275923.017	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P9	SE275923.018	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P10	SE275923.019	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P10	SE275923.020	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
P11	SE275923.021	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P11	SE275923.022	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P12	SE275923.023	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P12	SE275923.024	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P13	SE275923.025	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P13	SE275923.026	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P14	SE275923.027	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P14	SE275923.028	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P15	SE275923.029	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P15	SE275923.030	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P16	SE275923.031	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P16	SE275923.032	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P17	SE275923.033	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P18	SE275923.034	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P18	SE275923.035	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P19	SE275923.036	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P20	SE275923.037	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P20	SE275923.038	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P21	SE275923.039	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P21	SE275923.040	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P22	SE275923.041	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P23	SE275923.041	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024 20 Dec 2024
P24	SE275923.042	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024 20 Dec 2024
P25	SE275923.044	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024 20 Dec 2024
P25	SE275923.045	LB334064 LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P26	SE275923.046		13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
P <u>26</u> H1	SE275923.047 SE275923.048	LB334064 LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
	SE275923.048 SE275923.049		13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
H1		LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
H2	SE275923.050	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
12	SE275923.051	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
13	SE275923.052	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
13	SE275923.053	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
14	SE275923.054	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
14	SE275923.055	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
H5	SE275923.056	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
H6	SE275923.057	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
H6	SE275923.058	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
H7	SE275923.059	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
3H7	SE275923.060	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Conductivity (1:2) in soil (continued) Method: ME-(AU)-IENVIAN106 Analysed Sample Name Sample No. Analysis Due QC Ref Sampled Received Extraction Due Extracted BH8 SE275923.061 LB334064 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 Conductivity and TDS by Calculation - Soil Method: ME-(AU)-IENVIAN106 Extraction Due Analysis Due Analysed Sample Name Sample No. QC Ref Sampled Received Extracted TP1 SE275923 001 I B333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP1 SE275923.002 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP2 LB333953 16 Dec 2024 20 Dec 2024 SE275923.003 13 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 TP2 SE275923.004 LB333953 16 Dec 2024 20 Dec 2024 13 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 TP3 SE275923.005 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP3 SE275923.006 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP4 SE275923.007 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP4 SE275923.008 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP5 SE275923.009 I B333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP5 SE275923.010 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP6 SE275923.011 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP6 SE275923.012 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP7 SE275923.013 LB333953 16 Dec 2024 20 Dec 2024 13 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 TP7 SE275923.014 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP8 SE275923.015 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP8 SE275923.016 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 TP9 SE275923.017 I B333053 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 19 Dec 2024 TP9 SE275923.018 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 **TP10** SE275923.019 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP10 SE275923.020 LB333953 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 16 Dec 2024 TP11 SE275923.021 LB333958 20 Dec 2024 20 Dec 2024 13 Dec 2024 19 Dec 2024 20 Dec 2024 TP11 SE275923.022 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP12 SE275923.023 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP12 SE275923.024 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP13 SE275923.025 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP13 SE275923.026 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 TP14 SE275923.027 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP14 SE275923.028 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP15 SE275923.029 20 Dec 2024 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 TP15 SE275923.030 LB333958 16 Dec 2024 20 Dec 2024 13 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 TP16 SE275923.031 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 **TP16** SE275923.032 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP17 SE275923.033 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP18 SE275923.034 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP18 SE275923.035 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP19 SE275923.036 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP20 SE275923.037 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP20 SE275923.038 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 TP21 SE275923.039 LB333958 13 Dec 2024 16 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 20 Dec 2024 16 Dec 2024 TP21 SE275923 040 I B333958 20 Dec 2024 13 Dec 2024 20 Dec 2024 19 Dec 2024 20 Dec 2024 TP22 SE275923.041 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 TP23 SE275923.042 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 TP24 SE275923.043 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 TP25 SE275923.044 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 TP25 SE275923.045 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 TP26 SE275923.046 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 TP26 SE275923.047 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 BH1 SE275923.048 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 BH1 13 Dec 2024 LB334072 16 Dec 2024 20 Dec 2024 20 Dec 2024 SE275923.049 20 Dec 2024 20 Dec 2024 BH2 SE275923.050 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 BH2 SE275923.051 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 BH3 SE275923.052 LB334072 20 Dec 2024 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 BH3 SE275923.053 LB334072 16 Dec 2024 13 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 BH4 SE275923.054 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 BH4 SE275923.055 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 BH5 SE275923.056 LB334072 13 Dec 2024 16 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024 20 Dec 2024

HOLDING TIME SUMMARY

Mothod: ME (ALD JENN/JANI406

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Conductivity and TDS by Calculation - Soil (continued)

Conductivity and TDS by Calculation - Soil (continued) Method: ME-(AU)								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6	SE275923.057	LB334072	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
BH6	SE275923.058	LB334072	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
BH7	SE275923.059	LB334072	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
BH7	SE275923.060	LB334072	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
BH8	SE275923.061	LB334072	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024	20 Dec 2024
Exchangeable Cations ar	nd Cation Exchange Capacit	y (CEC/ESP/SAR)					Method:	ME-(AU)-[ENV]AN12
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE275923.001	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
TP1	SE275923.002	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
TP2	SE275923.003	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
TP3	SE275923.005	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
TP4	SE275923.007	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
TP4	SE275923.008	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
TP5	SE275923.010	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
TP6	SE275923.011	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
ГР7	SE275923.011	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
ГР7 ГР8	SE275923.013	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024 20 Dec 2024	10 Jan 2025	23 Dec 2024 23 Dec 2024
FP8	SE275923.016	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
FP9	SE275923.017	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P10	SE275923.019	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P11	SE275923.022	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P12	SE275923.023	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P13	SE275923.025	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P14	SE275923.028	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P15	SE275923.029	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P15	SE275923.030	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P16	SE275923.031	LB334045	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P16	SE275923.032	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P17	SE275923.033	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P18	SE275923.034	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P19	SE275923.036	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
FP20	SE275923.037	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P21	SE275923.039	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P21	SE275923.040	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P22	SE275923.041	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P23	SE275923.042	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P24	SE275923.043	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P25	SE275923.044	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
P26	SE275923.046	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
iH1	SE275923.048	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
BH2	SE275923.050	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
BH3	SE275923.052	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
3H4	SE275923.054	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
3H5	SE275923.056	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
3H6	SE275923.057	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
3H7	SE275923.059	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
3H8	SE275923.061	LB334047	13 Dec 2024	16 Dec 2024	10 Jan 2025	20 Dec 2024	10 Jan 2025	23 Dec 2024
loisture Content								ME-(AU)-[ENV]AN0
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE275923.001	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024

SE275923.001 LB333794 13 Dec 2024 16 Dec 2024 27 Dec 2024 18 Dec 2024 23 Dec 2024 TP1 20 Dec 2024 TP1 SE275923.002 LB333794 16 Dec 2024 27 Dec 2024 23 Dec 2024 20 Dec 2024 13 Dec 2024 18 Dec 2024 TP2 SE275923.003 LB333794 13 Dec 2024 16 Dec 2024 27 Dec 2024 18 Dec 2024 23 Dec 2024 20 Dec 2024 TP2 SE275923.004 LB333794 13 Dec 2024 16 Dec 2024 27 Dec 2024 18 Dec 2024 23 Dec 2024 20 Dec 2024 TP3 SE275923.005 LB333794 13 Dec 2024 16 Dec 2024 27 Dec 2024 18 Dec 2024 23 Dec 2024 20 Dec 2024 ТР3 SE275923.006 LB333794 16 Dec 2024 27 Dec 2024 23 Dec 2024 20 Dec 2024 13 Dec 2024 18 Dec 2024 TP4 SE275923.007 LB333794 13 Dec 2024 16 Dec 2024 27 Dec 2024 18 Dec 2024 23 Dec 2024 20 Dec 2024 TP4 SE275923.008 LB333794 13 Dec 2024 16 Dec 2024 27 Dec 2024 18 Dec 2024 23 Dec 2024 20 Dec 2024 TP5 SE275923.009 LB333794 13 Dec 2024 16 Dec 2024 27 Dec 2024 18 Dec 2024 23 Dec 2024 20 Dec 2024 TP5 SE275923.010 LB333794 13 Dec 2024 16 Dec 2024 27 Dec 2024 18 Dec 2024 23 Dec 2024 20 Dec 2024

Method: ME (ALD JENN/JAN002

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Moisture Content (continued)

Moisture Content (continue	ed)						Method:	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP6	SE275923.011	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP6	SE275923.012	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP7	SE275923.013	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP7	SE275923.014	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP8	SE275923.015	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP8	SE275923.016	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP9	SE275923.017	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP9	SE275923.018	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP10	SE275923.019	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP10	SE275923.020	LB333794	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP11	SE275923.021	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP11	SE275923.022	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP12	SE275923.023	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP12	SE275923.024	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP13	SE275923.025	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP13	SE275923.026	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP14	SE275923.027	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP14	SE275923.028	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP15	SE275923.029	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP15	SE275923.030	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP16	SE275923.031	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP16	SE275923.032	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP17	SE275923.033	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP18	SE275923.034	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP18	SE275923.035	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP19	SE275923.036	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP20	SE275923.037	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP20	SE275923.038	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP21	SE275923.039	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP21	SE275923.040	LB333830	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP22	SE275923.041	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP23	SE275923.042	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP24	SE275923.043	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP25	SE275923.044	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP25	SE275923.045	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP26	SE275923.046	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
TP26	SE275923.047	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
BH1	SE275923.048	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
BH1	SE275923.049	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
BH2	SE275923.050	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
BH2	SE275923.051	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
BH3	SE275923.052	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
BH3	SE275923.053	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
BH4								
BH4	SE275923.054 SE275923.055	LB333831 LB333831	13 Dec 2024 13 Dec 2024	16 Dec 2024 16 Dec 2024	27 Dec 2024 27 Dec 2024	18 Dec 2024 18 Dec 2024	23 Dec 2024 23 Dec 2024	20 Dec 2024 20 Dec 2024
BH5	SE275923.055	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024 27 Dec 2024		23 Dec 2024 23 Dec 2024	20 Dec 2024 20 Dec 2024
						18 Dec 2024		
BH6	SE275923.057	LB333831	13 Dec 2024 13 Dec 2024	16 Dec 2024 16 Dec 2024	27 Dec 2024 27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
BH6 BH7	SE275923.058	LB333831				18 Dec 2024	23 Dec 2024 23 Dec 2024	20 Dec 2024
	SE275923.059	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024		20 Dec 2024
BH7	SE275923.060	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
BH8	SE275923.061	LB333831	13 Dec 2024	16 Dec 2024	27 Dec 2024	18 Dec 2024	23 Dec 2024	20 Dec 2024
oH in soil (1:2)							Method:	ME-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE275923.001	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP1	SE275923.002	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP2	SE275923.003	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP2	SE275923.004	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP3	SE275923.005	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024

SE275923.006

LB333954

13 Dec 2024

16 Dec 2024

20 Dec 2024

19 Dec 2024

20 Dec 2024

TP3

20 Dec 2024

HOLDING TIME SUMMARY

Method: ME (ALD JENN/JAN101

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

pH in soil (1:2) (continued)

pH in soil (1:2) (continued)							Method:	ME-(AU)-[ENV]AN10
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP4	SE275923.007	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP4	SE275923.008	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP5	SE275923.009	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP5	SE275923.010	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP6	SE275923.011	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP6	SE275923.012	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP7	SE275923.013	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP7	SE275923.014	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP8	SE275923.015	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP8	SE275923.016	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP9	SE275923.017	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP9	SE275923.018	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP10	SE275923.019	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP10	SE275923.020	LB333954	13 Dec 2024	16 Dec 2024	20 Dec 2024	19 Dec 2024	20 Dec 2024	20 Dec 2024
TP11	SE275923.021	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP11	SE275923.022	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP12	SE275923.023	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP12	SE275923.024	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP13	SE275923.025	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP13	SE275923.026	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP14	SE275923.027	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP14	SE275923.028	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP15	SE275923.029	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP15	SE275923.030	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP16	SE275923.031	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP16	SE275923.032	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP17	SE275923.033	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP18	SE275923.034	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP18	SE275923.035	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP19	SE275923.036	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP20	SE275923.037	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP20	SE275923.038	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP21	SE275923.039	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP21	SE275923.040	LB334062	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP22	SE275923.041	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP23	SE275923.042	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP24	SE275923.043	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP25	SE275923.044	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP25	SE275923.045	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP26	SE275923.046	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
TP26	SE275923.047	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH1	SE275923.048	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH1	SE275923.049	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH2	SE275923.050	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH2	SE275923.051	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH3	SE275923.052	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH3	SE275923.053	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH4	SE275923.054	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH4	SE275923.055	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH5	SE275923.056	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH6	SE275923.057	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH6	SE275923.058	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH7	SE275923.059	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH7	SE275923.060	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
BH8	SE275923.061	LB334064	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	21 Dec 2024	20 Dec 2024
Soluble Anione in Soil from	n 1:2 DI Extract by Ion Chr							ME-(AU)-[ENV]AN24
						_		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

LB334065

LB334065

13 Dec 2024

13 Dec 2024

16 Dec 2024

16 Dec 2024

20 Dec 2024

20 Dec 2024

20 Dec 2024

20 Dec 2024

17 Jan 2025

17 Jan 2025

SE275923.001

SE275923.002

TP1

TP1

23 Dec 2024

23 Dec 2024

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography (continued)

		omatography (conti	-			-		ME-(AU)-[ENV]AN2
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP2	SE275923.003	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP2	SE275923.004	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
rp3	SE275923.005	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
rp3	SE275923.006	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP4	SE275923.007	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP4	SE275923.008	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP5	SE275923.009	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP5	SE275923.010	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP6	SE275923.011	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP6	SE275923.012	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP7	SE275923.013	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP7	SE275923.014	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP8	SE275923.015	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP8	SE275923.016	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
FP9	SE275923.017	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
rp9	SE275923.018	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
ГР10	SE275923.019	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P10	SE275923.020	LB334065	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P11	SE275923.021	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
FP11	SE275923.022	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
FP12	SE275923.023	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P12	SE275923.024	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P13	SE275923.025	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P13	SE275923.026	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P14	SE275923.027	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P14	SE275923.028	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P15	SE275923.029	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P15	SE275923.030	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P16	SE275923.031	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P16	SE275923.032	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P17	SE275923.033	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P18	SE275923.033	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P18	SE275923.034	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P19	SE275923.035	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024			23 Dec 2024
						20 Dec 2024	17 Jan 2025	
ГР20 ГР20	SE275923.037	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
	SE275923.038	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
TP21	SE275923.039	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P21	SE275923.040	LB334067	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P22	SE275923.041	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P23	SE275923.042	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P24	SE275923.043	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P25	SE275923.044	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P25	SE275923.045	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P26	SE275923.046	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
P26	SE275923.047	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
BH1	SE275923.048	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
BH1	SE275923.049	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
H2	SE275923.050	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
iH2	SE275923.051	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
H3	SE275923.052	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
H3	SE275923.053	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
iH4	SE275923.054	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
iH4	SE275923.055	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
H5	SE275923.056	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
3H6	SE275923.057	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
3H6	SE275923.058	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
3H7	SE275923.059	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
3H7	SE275923.060	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024
BH8	SE275923.061	LB334068	13 Dec 2024	16 Dec 2024	20 Dec 2024	20 Dec 2024	17 Jan 2025	23 Dec 2024

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE275923 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Chloride

Sulfate

Conductivity (1:2) in soil			Meth	od: ME-(AU)-[ENV]AN1(
Sample Number	Parameter	Units	LOR	Result
LB333954.001	Conductivity (1:2) @25 C*	µS/cm	1	<1
LB334062.001	Conductivity (1:2) @25 C*	μS/cm	1	<1
LB334064.001	Conductivity (1:2) @25 C*	µS/cm	1	<1
LB334064.026	Conductivity (1:2) @25 C*	µS/cm	1	<1
Conductivity and TDS by Calculation - Soil			Meth	od: ME-(AU)-[ENV]AN1
Sample Number	Parameter	Units	LOR	Result
LB333953.001	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0.71
LB333958.001	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0.79
LB334072.001	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0.44
Exchangeable Cations and Cation Exchange Cap	acity (CEC/ESP/SAR)		Meth	od: ME-(AU)-[ENV]AN1
Sample Number	Parameter	Units	LOR	Result
LB334045.001	Exchangeable Sodium, Na	mg/kg	2	0
	Exchangeable Potassium, K	mg/kg	2	0
	Exchangeable Calcium, Ca	mg/kg	2	0
	Exchangeable Magnesium, Mg	mg/kg	2	0
LB334047.001	Exchangeable Sodium, Na	mg/kg	2	0
	Exchangeable Potassium, K	mg/kg	2	0
	Exchangeable Calcium, Ca	mg/kg	2	0
	Exchangeable Magnesium, Mg	mg/kg	2	0
Soluble Anions in Soil from 1:2 DI Extract by Ion	Chromatography		Meth	od: ME-(AU)-[ENV]AN24
Sample Number	Parameter	Units	LOR	Result
LB334065.001	Chloride	mg/kg	0.25	<0.25
	Sulfate	mg/kg	0.5	<0.5
LB334067.001	Chloride	mg/kg	0.25	<0.25
	Sulfate	mg/kg	0.5	<0.5

mg/kg

mg/kg

0.25

0.5

<0.25

<0.5

LB334068.001

Method: ME-(ALI)-JENVIAN106

Method: ME-(AU)-[ENV]AN002

Method: ME-(AU)-[ENV]AN101

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Conductivity (1.2) in soil

						Mour	00. MIC-(//0)-	The second second
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275923.010	LB333954.014	Conductivity (1:2) @25 C*	µS/cm	1	220	210	31	2
		Resistivity (1:2)*	ohm cm	-	4600	4700	30	2
E275923.020 LB333954.025		Conductivity (1:2) @25 C*	µS/cm	1	650	730	30	12
		Resistivity (1:2)*	ohm cm	-	1600	1400	31	12
SE275923.030	LB334062.014	Conductivity (1:2) @25 C*	µS/cm	1	230	200	31	16
		Resistivity (1:2)*	ohm cm	-	4300	5000	30	16
E275923.040 LB334062.025	LB334062.025	Conductivity (1:2) @25 C*	µS/cm	1	460	460	30	1
		Resistivity (1:2)*	ohm cm	-	2200	2200	30	1
SE275923.050	LB334064.014	Conductivity (1:2) @25 C*	µS/cm	1	720	730	30	1
		Resistivity (1:2)*	ohm cm	-	1400	1400	31	1
SE275923.060	LB334064.025	Conductivity (1:2) @25 C*	µS/cm	1	75	81	33	8
		Resistivity (1:2)*	ohm cm	-	13000	12000	30	8
SE275923.061	LB334064.030	Conductivity (1:2) @25 C*	µS/cm	1	89	90	32	1
		Resistivity (1:2)*	ohm cm	-	11000	11000	30	1
onductivity and T	DS by Calculation - Soil					Meth	od: ME-(AU)-	ENVJAN10

Conductivity and TDS by Calculation - Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275923.010	LB333953.014	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	130	36.604323094	31	4
SE275923.020	LB333953.025	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	520	16.744186046	30	0
SE275923.030	LB333958.014	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	78	03.728688524	32	28
SE275923.040	LB333958.025	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	230	54.724711907	31	11
SE275923.050	LB334072.014	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	490	66.299049265	30	29
SE275923.060	LB334072.025	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	24	22.2325609756	39	6
SE275923.061	LB334072.030	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	50	51.5223277909	34	2

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275923.010	LB333794.011	% Moisture	%w/w	1	11.6	15.8	37	31
SE275923.020	LB333794.022	% Moisture	%w/w	1	19.1	18.8	35	1
SE275923.030	LB333830.011	% Moisture	%w/w	1	15.9	17.5	36	9
SE275923.040	LB333830.022	% Moisture	%w/w	1	20.3	21.4	35	5
SE275923.050	LB333831.011	% Moisture	%w/w	1	15.9	15.8	36	1
SE275923.060	LB333831.022	% Moisture	%w/w	1	9.6	9.3	41	3
SE275923.061	LB333831.024	% Moisture	%w/w	1	10.3	10.6	40	2

pH in soil (1:2)

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275923.010	LB333954.014	pH (1:2)	pH Units	-	4.7	4.7	32	1
SE275923.020	LB333954.025	pH (1:2)	pH Units	-	4.2	4.3	32	2
SE275923.030	LB334062.014	pH (1:2)	pH Units	-	4.5	4.5	32	1
SE275923.040	LB334062.025	pH (1:2)	pH Units	-	4.5	4.6	32	1
SE275923.050	LB334064.014	pH (1:2)	pH Units	-	4.4	4.4	32	1
SE275923.060	LB334064.025	pH (1:2)	pH Units	-	5.2	5.1	32	2
SE275923.061	LB334064.030	pH (1:2)	pH Units	-	4.7	4.9	32	3

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography

Soluble Anions in	Soil from 1:2 DI Extract by lo	n Chromatography				Meth	od: ME-(AU)-	ENVJAN24
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275923.010	LB334065.014	Chloride	mg/kg	0.25	9.8	9.0	33	9
		Sulfate	mg/kg	0.5	170	170	31	1
SE275923.020	LB334065.027	Chloride	mg/kg	0.25	300	340	30	13
		Sulfate	mg/kg	0.5	300	370	31	21
SE275923.030	LB334067.014	Chloride	mg/kg	0.25	120	97	30	23
		Sulfate	mg/kg	0.5	36	47	35	25
SE275923.040	LB334067.027	Chloride	mg/kg	0.25	310	310	30	1
		Sulfate	mg/kg	0.5	8.8	9.3	52	6
SE275923.050	LB334068.014	Chloride	mg/kg	0.25	350	350	30	2
		Sulfate	mg/kg	0.5	220	250	31	10
SE275923.060	LB334068.028	Chloride	mg/kg	0.25	21	25	31	19
		Sulfate	mg/kg	0.5	13	13	45	7
SE275923.061	LB334068.030	Chloride	mg/kg	0.25	27	26	31	6
		Sulfate	mg/kg	0.5	17	18	42	6

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity (1:2) in soil					1	Method: ME-(Al	J)-[ENV]AN1
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB333954.002	Conductivity (1:2) @25 C*	µS/cm	1	280	303	70 - 130	93
LB334062.002	Conductivity (1:2) @25 C*	µS/cm	1	300	303	70 - 130	99
LB334064.002	Conductivity (1:2) @25 C*	µS/cm	1	280	303	70 - 130	93
LB334064.028	Conductivity (1:2) @25 C*	µS/cm	1	290	303	70 - 130	97
Conductivity and TDS by Calc	ulation - Soil					Method: ME-(Al	J)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB333953.002	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	104
LB333958.002	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	101
LB334072.002	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	99
Exchangeable Cations and Ca	ation Exchange Capacity (CEC/ESP/SAR)					Method: ME-(Al	J)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB334045.002	Exchangeable Sodium, Na	meq/100g	0.01	0.17	0.188	80 - 120	92
	Exchangeable Potassium, K	meq/100g	0.01	0.13	0.141	80 - 120	96
	Exchangeable Calcium, Ca	meq/100g	0.01	2.1	2.17	80 - 120	96
	Exchangeable Magnesium, Mg	meq/100g	0.02	1.4	1.53	80 - 120	93
LB334047.002	Exchangeable Sodium, Na	meq/100g	0.01	0.17	0.188	80 - 120	91
	Exchangeable Potassium, K	meq/100g	0.01	0.13	0.141	80 - 120	95
	Exchangeable Calcium, Ca	meq/100g	0.01	2.1	2.17	80 - 120	96
	Exchangeable Magnesium, Mg	meq/100g	0.02	1.4	1.53	80 - 120	93
oH in soil (1:2)					1	Method: ME-(Al	J)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB333954.003	pH (1:2)	pH Units	-	7.5	7.415	98 - 102	101
LB334062.003	pH (1:2)	pH Units	-	7.4	7.415	98 - 102	100
LB334064.003	pH (1:2)	pH Units	-	7.4	7.415	98 - 102	100
LB334064.029	pH (1:2)	pH Units	-	7.4	7.415	98 - 102	100
Soluble Anions in Soil from 1:	2 DI Extract by Ion Chromatography				1	Method: ME-(Al	J)-[ENV]AI
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB334065.002	Chloride	mg/kg	0.25	41	40	70 - 130	102
	Sulfate	mg/kg	0.5	42	40	70 - 130	104
LB334067.002	Chloride	mg/kg	0.25	42	40	70 - 130	106
	Sulfate	mg/kg	0.5	43	40	70 - 130	108
LB334068.002	Chloride	mg/kg	0.25	42	40	70 - 130	104
	Sulfate	mg/kg	0.5	42	40	70 - 130	105

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

source: Sydney.pdf page: 4 SGS Ref: SE275923_COC

Lemko Place PENRITH NS	W 2750			PENI	P O Box 880 RITH NSW 2751	Fax: (02	4722 2700) 4722 6161 nfo@geotech.com.au			Page	1 of 4
TO:	SGS ENVIRONI UNIT 16 33 MADDOX ST ALEXANDRIA	REET	ERVICES				Sampling By:	BJ/AN	Job No Project:	20600/2 Proposed Master Planned Community	
PH: ATTN:	02 8594 0400 Ms Emily Yin			FAX:	02 8594 0499		Project Manager:	IJ/BJ	Location:	393 Terrace Road, North Richmond	
	Sampling	details						_	Results rec	quired by:	
Location	Depth	Soil	Water	EC (1:5)	Agressivity	ESP				Notes	Keep Sample
TP1	0.4-0.5	DSP		· · ·	V	1				Aggressivity Test = pH, CI	~
IFI	1.5-1.7	DSP		1	~	1				SO4 and Resistivity	~
TP2	0.4-0.6	DSP		1	1	1					1
IFZ	1.8-2.0	DSP		1	~						1
TP3	0.4-0.6	DSP		1	~	1					1
IFS	1.8-2.0	DSP		1	~					ESP=	1
TP4	0.5-0.7	DSP		1	~	1				Exchangeable sodium percentage	~
114	1.7-1.9	DSP		1	~	1					~
TP5	0.3-0.5	DSP		1	~						~
115	0.9-1.0	DSP			~	1					~
TP6	0.5-0.7	DSP		~	~	1					~
110	2.0-2.2	DSP		~	~						~
TP7	0.5-0.7	DSP		~	~	~				S Sydney COC	~
	1.8-2.0	DSP		1	1						~
TP8	0.5-0.6	DSP		~	1	~			SE2	75923	1
	1.4-1.5	DSP		~	1	~					1
TP9	0.5-0.6	DSP		~	1	~					~
	1.8-2.0	DSP		~	~						V
				Die		technic	al Engineering	Templ	ete for Repo	rting	
			Delinguishes		ase use dec	Juscining	ai Engineering	, rompi	oto for hopo	Received by	
	Name	1	Relinquished	Signature		Date	Name			Signature	16/12/20
	Bivek			BJ		13/12/2024		K		dr	2.50
Legend: WG				USG	Undisturbed soil s				ble (small plastic bag		
VP				DSG	Disturbed soil sar	mple (glass ja	ar) 🗸 Test red	quired		# Geotechnique Screen	

PENRITH N				PEN	RITH NSW 2751	email: i	nfo@geotech.com.au			Page	2 of 4
TO:	SGS ENVIRON	MENTAL SE	RVICES				Sampling By:	BJ/AN	Job No	20600/2	
	UNIT 16 33 MADDOX S ALEXANDRIA								Project:	Proposed Master Planned Community	
PH: ATTN:	02 8594 0400 Ms Emily Yin			FAX:	02 8594 0499		Project Manager:	IJ/BJ	Location:	393 Terrace Road, North Richmond	
	Sampling	details					1		Results req	uired by:	
Location	Depth	Soil	Water	EC (1:5)	Agressivity	ESP				Notes	Keep Sampl
TP10	0.5-0.7	DSP		~	~	~				Aggressivity Test = pH, CI	· · ·
	1.4-1.5	DSP		~	~					SO4 and Resistivity	1
TP11	0.3-0.5	DSP		1	~						1
	1.2-1.4	DSP		1	~	1					1
TP12	0.4-0.5	DSP		~	1	~					V
	0.8-1.0	DSP		~	~						~
TP13	0.4-0.6	DSP		1	~	~				ESP=	1
	1.3-1.5	DSP		~	~					Exchangeable sodium percentage	1
TP14	0.2-0.4	DSP		1	~						1
	0.7-0.8	DSP		~	~	~					1
TP15	0.4-0.5	DSP		~	~	~					~
	1.1-1.3	DSP		~	~	~					~
TP16	0.6-0.7	DSP		~	~	~					1
	1.3-1.4	DSP		~	~	~					~
TP17	0.2-0.4	DSP		~	~	\checkmark					1
TP18	0.5-0.6	DSP		~	~	~					~
	1.7-1.8	DSP		~	~						~
TP19	0.5-0.6	DSP		~	~	~					~
					se Use Geo	technic	al Engineering	Temple	ete for Report		
		R	elinquished						-	Received by	
	Name Bivek		S	BJ		Date 13/12/2024	Name	c		Signature	1612124
Legend: WG	Diver	1		0.00	Undisturbed soil s				e (small plastic bag)	* Purge & Trap	2:50

PENRITH NS				PENF	RITH NSW 2751	email: ir	nfo@geotech.com.au			Page	3 of 4
TO:	SGS ENVIRON	MENTAL SE	RVICES				Sampling By:	BJ/AN	Job No	20600/2	
	UNIT 16 33 MADDOX ST ALEXANDRIA								Project:	Proposed Master Planned Community	
PH: ATTN:	02 8594 0400 Ms Emily Yin			FAX:	02 8594 0499		Project Manager:	IJ/BJ	Location:	393 Terrace Road, North Richmond	
	Sampling	details							Results re	quired by:	
Location	Depth	Soil	Water	EC (1:5)	Agressivity	ESP				Notes	Keep Sample
TP20	0.6-0.7	DSP		~	1	~				Aggressivity Test = pH, CI	1
	1.9-2.1	DSP		1	~					SO4 and Resistivity	1
TP21	0.4-0.5	DSP		~	1	~					1
	1.4-1.5	DSP		~	~	\checkmark					~
TP22	0.3-0.5	DSP		~	1	~					1
TP23	0.5-0.6	DSP		~	~	~					~
TP24	0.4-0.6	DSP		1	1	1				ESP=	1
TP25	0.4-0.6	DSP		~	~	1				Exchangeable sodium percentage	1
	2.0-2.3	DSP		~	1						~
TP26	0.5-0.6	DSP		~	1	~					~
	2.0-2.1	DSP		~	~						~
BH1	0.5-1.0	DSP		~	1	1					~
	1.5-2.0	DSP		~	~						~
BH2	0.5-1.0	DSP		~	~	1					1
	1.5-2.0	DSP		~	~						~
BH3	0.5-1.0	DSP		~	~	1					~
	3.0-3.5	DSP		~	~						~
	1										
				Plea	se Use Geo	technic	al Engineering	Templ	ete for Repo	orting	
		F	Relinguished							Received by	
N	lame	1		Signature		Date	Name	9		Signature	16/12/24
	Bivek			BJ		13/12/2024	Joel	K	0	ha	2:50
Legend:				USG	Undisturbed soil s		i DSP Disturb		le (small plastic bag	a) * Purge & Trap	

Lemko Place PENRITH NS	W 2750			PEN	P O Box 880 RITH NSW 2751	Fax: (02) 4722 2700 2) 4722 6161 nfo@geotech.com.au			Page	4 of 4
TO:	SGS ENVIRON UNIT 16 33 MADDOX S ALEXANDRIA	TREET	RVICES				Sampling By:	BJ/AN	Job No Project:	20600/2 Proposed Master Planned Community	
PH: ATTN:	02 8594 0400 Ms Emily Yin			FAX:	02 8594 0499		Project Manager:	IJ/BJ	Location:	393 Terrace Road, North Richmond	
	Sampling	details							Results re	equired by:	
Location	Depth	Soil	Water	EC (1:5)	Agressivity	ESP				Notes	Keep Sample
BH4	0.5-1.0	DSP		~	~	~				Aggressivity Test = pH, CI	
1	2.5-3.0	DSP		~	1					SO4 and Resistivity	~
BH5	0.4-0.6	DSP		~	1	~					1
BH6	0.5-0.95	DSP		~	1	~					~
	2.5-2.6	DSP		~	1						1
BH7	0.4-0.5	DSP		~	1	~				ESP=	1
	1.5-1.85	DSP		~	~					Exchangeable sodium percentage	~
BH8	0.5-1.0	DSP		~	~	~					✓
			alinguiakad		se Use Geo	technic	al Engineering	Temple	ete for Repo	orting	
N	ame	I R	elinquished	by Signature		Date	Name		1	Received by Signature	16112120
	livek			BJ		13/12/2024				de la constitución de la constit	2:50
Legend: WG WP				USG	Undisturbed soil sa Disturbed soil sam	ample (glass	j DSP Disturbe	ed soil sample	e (small plastic ba	g) * Purge & Trap # Geotechnique Screen	2-30

CLIENT DETAIL	S	LABORATORY DETA	ILS
Contact	Indra Jworchan	Manager	Shane McDermott
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	20600/2 393 Terrace Road, North Richmond 20600/2 61	Samples Received Report Due SGS Reference	Mon 16/12/2024 Mon 23/12/2024 SE275923

SUBMISSION DETAILS

This is to confirm that 61 samples were received on Monday 16/12/2024. Results are expected to be ready by COB Monday 23/12/2024. Please quote SGS reference SE275923 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix	61 Soil	Type of documentation received	COC
Date documentation received	16/12/2024	Samples received in good order	Yes
Samples received without headspace	N/A	Sample temperature upon receipt	26.3°C
Sample container provider	SGS	Turnaround time requested	Standard
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes
Sample cooling method	None	Samples clearly labelled	Yes
Complete documentation received	Yes	Number of eskies/boxes received	

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS .

Client Geotechnique

Project 20600/2 393 Terrace Road, North Richmond

No.	Sample ID	Conductivity (1:2) in soil	Conductivity and TDS by Calculation - Soil	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:2)	Soluble Anions in Soil from 1:2 DI Extract by Ion
001	TP1 0.4-0.5	2	1	13	1	1	2
002	TP1 1.5-1.7	2	1	13	1	1	2
003	TP2 0.4-0.6	2	1	13	1	1	2
004	TP2 1.8-2.0	2	1	-	1	1	2
005	TP3 0.4-0.6	2	1	13	1	1	2
006	TP3 1.8-2.0	2	1	-	1	1	2
007	TP4 0.5-0.7	2	1	13	1	1	2
008	TP4 1.7-1.9	2	1	13	1	1	2
009	TP5 0.3-0.5	2	1	-	1	1	2
010	TP5 0.9-1.0	2	1	13	1	1	2
011	TP6 0.5-0.7	2	1	13	1	1	2
012	TP6 2.0-2.2	2	1	-	1	1	2
013	TP7 0.5-0.7	2	1	13	1	1	2
014	TP7 1.8-2.0	2	1	-	1	1	2
015	TP8 0.5-0.6	2	1	13	1	1	2
016	TP8 1.4-1.5	2	1	13	1	1	2
017	TP9 0.5-0.6	2	1	13	1	1	2
018	TP9 1.8-2.0	2	1	-	1	1	2
019	TP10 0.5-0.7	2	1	13	1	1	2
020	TP10 1.4-1.5	2	1	-	1	1	2
021	TP11 0.3-0.5	2	1	-	1	1	2
022	TP11 1.2-1.4	2	1	13	1	1	2
023	TP12 0.4-0.5	2	1	13	1	1	2
024	TP12 0.8-1.0	2	1	-	1	1	2

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

CLIENT DETAILS .

Client Geotechnique

Project 20600/2 393 Terrace Road, North Richmond

No.	Sample ID	Conductivity (1:2) in soil	Conductivity and TDS by Calculation - Soil	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:2)	Soluble Anions in Soil from 1:2 DI Extract by Ion
025	TP13 0.4-0.6	2	1	13	1	1	2
026	TP13 1.3-1.5	2	1	-	1	1	2
027	TP14 0.2-0.4	2	1	-	1	1	2
028	TP14 0.7-0.8	2	1	13	1	1	2
029	TP15 0.4-0.5	2	1	13	1	1	2
030	TP15 1.1-1.3	2	1	13	1	1	2
031	TP16 0.6-0.7	2	1	13	1	1	2
032	TP16 1.3-1.4	2	1	13	1	1	2
033	TP17 0.2-0.4	2	1	13	1	1	2
034	TP18 0.5-0.6	2	1	13	1	1	2
035	TP18 1.7-1.8	2	1	-	1	1	2
036	TP19 0.5-0.6	2	1	13	1	1	2
037	TP20 0.6-0.7	2	1	13	1	1	2
038	TP20 1.9-2.1	2	1	-	1	1	2
039	TP21 0.4-0.5	2	1	13	1	1	2
040	TP21 1.4-1.5	2	1	13	1	1	2
041	TP22 0.3-0.5	2	1	13	1	1	2
042	TP23 0.5-0.6	2	1	13	1	1	2
043	TP24 0.4-0.6	2	1	13	1	1	2
044	TP25 0.4-0.6	2	1	13	1	1	2
045	TP25 2.0-2.3	2	1	-	1	1	2
046	TP26 0.5-0.6	2	1	13	1	1	2
047	TP26 2.0-2.1	2	1	-	1	1	2
048	BH1 0.5-1.0	2	1	13	1	1	2

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client Geotechnique

Project 20600/2 393 Terrace Road, North Richmond

SUMMAR	Y OF ANALYSIS		1	1	1		1
No.	Sample ID	Conductivity (1:2) in soil	Conductivity and TDS by Calculation - Soil	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:2)	Soluble Anions in Soil from 1:2 DI Extract by Ion
049	BH1 1.5-2.0	2	1	-	1	1	2
050	BH2 0.5-1.0	2	1	13	1	1	2
051	BH2 1.5-2.0	2	1	-	1	1	2
052	BH3 0.5-1.0	2	1	13	1	1	2
053	BH3 3.0-3.5	2	1	-	1	1	2
054	BH4 0.5-1.0	2	1	13	1	1	2
055	BH4 2.5-3.0	2	1	-	1	1	2
056	BH5 0.4-0.6	2	1	13	1	1	2
057	BH6 0.5-0.95	2	1	13	1	1	2
058	BH6 2.5-2.6	2	1	-	1	1	2
059	BH7 0.4-0.5	2	1	13	1	1	2
060	BH7 1.5-1.85	2	1	-	1	1	2
061	BH8 0.5-1.0	2	1	13	1	1	2

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .